Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Solution NMR of supramolecular complexes: providing new insights into function

Abstract

Solution NMR spectroscopy is an extremely powerful technology for the study of biomolecular dynamics and site-specific molecular interactions. An important limitation in the past has been molecule size, with molecular weights of targets seldom exceeding 50 kDa. New labeling technology and NMR experiments are changing this paradigm so that applications for investigating supramolecular complexes are starting to become feasible. Here we describe a strategy developed in our laboratory that involves the use of labeled methyl groups of isoleucine, leucine and valine residues in proteins as probes, along with experiments that significantly enhance the lifetimes of the resulting signals. We describe the application of these methods to a number of systems with molecular weights in the hundreds of kilodaltons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methyl labeling strategy.
Figure 2: Relaxation and methyl-TROSY.
Figure 3: Ligand binding to ATCase.
Figure 4: Molecular dynamics in the ClpP protease.
Figure 5
Figure 6: Assignment strategy for the 20S proteasome and subsequent studies of interactions and dynamics.

Similar content being viewed by others

References

  1. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley & Sons, New York, 1986).

    Book  Google Scholar 

  2. Bax, A. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 1–16 (2003).

    Article  CAS  Google Scholar 

  3. Wider, G. & Wüthrich, K. NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol. 9, 594–601 (1999).

    Article  CAS  Google Scholar 

  4. Bax, A. Multidimensional nuclear magnetic resonance methods for protein studies. Curr. Opin. Struct. Biol. 4, 738–744 (1994).

    Article  CAS  Google Scholar 

  5. Gardner, K.H. & Kay, L.E. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406 (1998).

    Article  CAS  Google Scholar 

  6. Farmer, B.T. & Venters, R.A. in Biological Magnetic Resonance (eds. Krishna, N.R. & Berliner, L.J.) 75–120 (Kluwer/Plenum, New York, 1998).

    Google Scholar 

  7. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  8. Fiaux, J., Bertelsen, E.B., Horwich, A.L. & Wüthrich, K. NMR analysis of a 900K GroEL-GroES complex. Nature 418, 207–221 (2002).

    Article  CAS  Google Scholar 

  9. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  Google Scholar 

  10. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  11. Tugarinov, V., Choy, W.Y., Orekhov, V.Y. & Kay, L.E. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc. Natl. Acad. Sci. USA 102, 622–627 (2005).

    Article  CAS  Google Scholar 

  12. Palmer, A.G., Williams, J. & McDermott, A. Nuclear magnetic resonance studies of biopolymer dynamics. J. Phys. Chem. 100, 13293–13310 (1996).

    Article  CAS  Google Scholar 

  13. Mittermaier, A. & Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    Article  CAS  Google Scholar 

  14. Goto, N.K. & Kay, L.E. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592 (2000).

    Article  CAS  Google Scholar 

  15. Clore, G.M. & Gronenborn, A.M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252, 1390–1399 (1991).

    Article  CAS  Google Scholar 

  16. LeMaster, D.M. & Richards, F.M. NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteration. Biochemistry 27, 142–150 (1988).

    Article  CAS  Google Scholar 

  17. Grzesiek, S., Anglister, J., Ren, H. & Bax, A. 13C line narrowing by 2H decoupling in 2H/13C/15N-enriched proteins. Applications to triple resonance 4D J-connectivity of sequential amides. J. Am. Chem. Soc. 115, 4369–4370 (1993).

    Article  CAS  Google Scholar 

  18. Tugarinov, V. & Kay, L.E. An isotope labeling strategy for methyl TROSY spectroscopy. J. Biomol. NMR 28, 165–172 (2004).

    Article  CAS  Google Scholar 

  19. Janin, J., Miller, S. & Chothia, C. Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204, 155–164 (1988).

    Article  CAS  Google Scholar 

  20. Dalvit, C. & Stockman, B.J. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc. 41, 187–231 (2002).

    Article  Google Scholar 

  21. Gardner, K.H., Rosen, M.K. & Kay, L.E. Global folds of highly deuterated, methyl protonated proteins by multidimensional NMR. Biochemistry 36, 1389–1401 (1997).

    Article  CAS  Google Scholar 

  22. Zheng, D. et al. Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci. 12, 1232–1246 (2003).

    Article  CAS  Google Scholar 

  23. Nicholson, L.K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococal nuclease. Biochemistry 31, 5253–5263 (1992).

    Article  CAS  Google Scholar 

  24. Tugarinov, V. & Kay, L.E. Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 44, 15970–15977 (2005).

    Article  CAS  Google Scholar 

  25. Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. & Kay, L.E. A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-,13C-,2H-labeled proteins. J. Biomol. NMR 13, 369–374 (1999).

    Article  CAS  Google Scholar 

  26. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  CAS  Google Scholar 

  27. McCaldon, P. & Argos, P. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins 4, 99–122 (1988).

    Article  CAS  Google Scholar 

  28. Ernst, R.R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, UK, 1987).

    Google Scholar 

  29. Tugarinov, V., Hwang, P., Ollerenshaw, J. & Kay, L.E. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125, 10420–10428 (2003).

    Article  CAS  Google Scholar 

  30. Sprangers, R., Gribun, A., Hwang, P.M., Houry, W.A. & Kay, L.E. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc. Natl. Acad. Sci. USA 102, 16678–16683 (2005).

    Article  CAS  Google Scholar 

  31. Sprangers, R. & Kay, L.E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007).

    Article  CAS  Google Scholar 

  32. Kainosho, M. et al. Optimal isotope labelling for NMR protein structure determinations. Nature 440, 52–57 (2006).

    Article  CAS  Google Scholar 

  33. Velyvis, A., Yang, Y.R., Schachman, H.K. & Kay, L.E. A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc. Natl. Acad. Sci. USA (2007).

  34. Schachman, H.K. Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J. Biol. Chem. 263, 18583–18586 (1988).

    CAS  PubMed  Google Scholar 

  35. Wang, J., Harting, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    Article  CAS  Google Scholar 

  36. Ortega, J., Singh, S.K., Ishikawa, T., Maurizi, M.R. & Steven, A.C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6, 1515–1521 (2000).

    Article  CAS  Google Scholar 

  37. Choi, K.H. & Licht, S. Control of peptide product sizes by the energy-dependent protease ClpAP. Biochemistry 44, 13921–13931 (2005).

    Article  CAS  Google Scholar 

  38. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4, 727–734 (1994).

    Article  CAS  Google Scholar 

  39. Montelione, G.T. & Wagner, G. 2D chemical-exchange NMR-spectroscopy by proton detected heteronuclear correlation. J. Am. Chem. Soc. 111, 3096–3098 (1989).

    Article  CAS  Google Scholar 

  40. Palmer, A.G., III, Grey, M.J. & Wang, C. Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Methods Enzymol. 394, 430–465 (2005).

    Article  CAS  Google Scholar 

  41. Korzhnev, D.M., Kloiber, K., Kanelis, V., Tugarinov, V. & Kay, L.E. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J. Am. Chem. Soc. 126, 3964–3973 (2004).

    Article  CAS  Google Scholar 

  42. Gribun, A. et al. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J. Biol. Chem. 280, 16185–16196 (2005).

    Article  CAS  Google Scholar 

  43. Goldberg, A.L., Gaczynska, M., Grant, E., Michalek, M. & Rock, K.L. Functions of the proteasome in antigen presentation. Cold Spring Harb. Symp. Quant. Biol. 60, 479–490 (1995).

    Article  CAS  Google Scholar 

  44. Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5, 177–187 (2004).

    Article  CAS  Google Scholar 

  45. Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

    Article  CAS  Google Scholar 

  46. Tugarinov, V., Sprangers, R. & Kay, L.E. Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J. Am. Chem. Soc. 129, 1743–1750 (2007).

    Article  CAS  Google Scholar 

  47. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  Google Scholar 

  48. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research (CIHR). R.S. and A.V. acknowledge post-doctoral support from a CIHR training grant in protein folding and disease and a CIHR post-doctoral fellowship, respectively. L.E.K. is the recipient of a Canada Research Chair in Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis E Kay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprangers, R., Velyvis, A. & Kay, L. Solution NMR of supramolecular complexes: providing new insights into function. Nat Methods 4, 697–703 (2007). https://doi.org/10.1038/nmeth1080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing