Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans


The nematode C. elegans is an excellent model organism for studying behavior at the neuronal level. Because of the organism's small size, it is challenging to deliver stimuli to C. elegans and monitor neuronal activity in a controlled environment. To address this problem, we developed two microfluidic chips, the 'behavior' chip and the 'olfactory' chip for imaging of neuronal and behavioral responses in C. elegans. We used the behavior chip to correlate the activity of AVA command interneurons with the worm locomotion pattern. We used the olfactory chip to record responses from ASH sensory neurons exposed to high-osmotic-strength stimulus. Observation of neuronal responses in these devices revealed previously unknown properties of AVA and ASH neurons. The use of these chips can be extended to correlate the activity of sensory neurons, interneurons and motor neurons with the worm's behavior.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The 'behavior' chip for correlating locomotion patterns with neuronal activity.
Figure 2: The 'olfactory' chip.
Figure 3: Calcium transients in ASH neurons in response to a hyperosmotic stimulus.


  1. 1

    Lockery, S.R. & Goodman, M.B. Tight-seal whole-cell patch clamping of Caenorhabditis elegans neurons. Methods Enzymol. 293, 201–217 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Pologruto, T.A., Yasuda, R. & Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572–9579 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Hilliard, M.A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J. 24, 63–72 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Faumont, S. & Lockery, S.R. The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. J. Neurophysiol. 95, 1976–1981 (2006).

    Article  Google Scholar 

  7. 7

    Clark, D.A., Gabel, C.V., Gabel, H. & Samuel, A.D.T. Temporal activity patterns in thermosensory neurons of freely moving C. elegans encode spatial thermal gradients. J. Neurosci. 27, 6083–6090 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Griffith, L.G. & Naughton, G. Tissue engineering—current challenges and expanding opportunities. Science 295, 1009–1014 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Wheeler, A.R. et al. Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Lucchetta, E.M., Lee, J.H., Fu, L.A., Patel, N.H. & Ismagilov, R.F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Younan, X. & Whitesides, G. Soft lithography. Annu. Rev. Materials Sci. 28, 153–184 (1998).

    Article  Google Scholar 

  13. 13

    Croll, A. Components and patterns in the behavior of the nematode Caenorhabditis elegans. J. Zool. 176, 159–176 (1975).

    Article  Google Scholar 

  14. 14

    Gray, J. & Lissmann, H.W. The locomotion of nematodes. J. Exp. Biol. 41, 135–154 (1964).

    CAS  PubMed  Google Scholar 

  15. 15

    Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985).

    CAS  Article  Google Scholar 

  16. 16

    Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Chesler, M. & Kaila, K. Modulation of pH by neuronal activity. Trends Neurosci. 15, 396–402 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Kneen, M., Farinas, J., Li, Y. & Verkman, A.S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591–1599 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Kaplan, J.M. & Horvitz, H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 2227–2231 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Jager, E.W., Smela, E. & Inganas, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Gaitan, M. & Locascio, L.E. Embedded microheating elements in polymeric micro channels for temperature control and fluid flow sensing. J. Res. Natl. Inst. Stand. Technol. 109, 335–344 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Kahn-Kirby, A.H. et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119, 889–900 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Brockie, P.J., Madsen, D.M., Zheng, Y., Mellem, J. & Maricq, A.V. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J. Neurosci. 21, 1510–1522 (2001).

    CAS  Article  Google Scholar 

Download references


We thank S. Leibler for the use of his clean room facility. This work was supported by the Howard Hughes Medical Institute and a fellowship from the International Human Frontier Science Program Organization to M.Z. C.I.B. is a Howard Hughes Medical Institute investigator.

Author information




N.C. designed the microfluidic chips, conducted the experiments, interpreted the data and wrote the paper; M.Z. designed and conducted the experiments, interpreted the data and wrote the paper; C.I.B. interpreted the data and wrote the paper.

Corresponding author

Correspondence to Nikos Chronis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 879 kb)

Supplementary Video 1

AVA calcium transients correlate with the generation of anterior-traveling body waves. (MOV 2355 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chronis, N., Zimmer, M. & Bargmann, C. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4, 727–731 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing