Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recombinant RNA technology: the tRNA scaffold

Abstract

RNA has emerged as a major player in most cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. So far, this has been a bottleneck, as the only methods for producing such pure RNA have been in vitro syntheses. Here we describe a generic approach for expressing and purifying structured RNA in Escherichia coli, using tools that parallel those available for recombinant proteins. Our system is based on a camouflage strategy, the 'tRNA scaffold', in which the recombinant RNA is disguised as a natural RNA and thus hijacks the host machinery, escaping cellular RNases. This opens the way to large-scale structural and molecular investigations of RNA function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tRNA scaffold strategy.
Figure 2: Using tRNA chimeras in structural studies.
Figure 3: Structures of the several RNA chimera that were successfully expressed using the tRNA scaffold strategy.
Figure 4: Expression and purification of recombinant RNA.
Figure 5: NMR analysis of RNA inserts cleaved with RNase H.

Similar content being viewed by others

References

  1. Breaker, R.R. Natural and engineered nucleic acids as tools to explore biology. Nature 432, 838–845 (2004).

    Article  CAS  Google Scholar 

  2. Holbrook, S.R. RNA structure: the long and the short of it. Curr. Opin. Struct. Biol. 15, 302–308 (2005).

    Article  CAS  Google Scholar 

  3. Puerta-Fernandez, E., Romero-Lopez, C., Barroso-del Jesus, A. & Berzal-Herranz, A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol. Rev. 27, 75–97 (2003).

    Article  CAS  Google Scholar 

  4. Hermann, T. & Westhof, E. RNA as a drug target: chemical, modelling, and evolutionary tools. Curr. Opin. Biotechnol. 9, 66–73 (1998).

    Article  CAS  Google Scholar 

  5. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    Article  CAS  Google Scholar 

  6. Guo, P. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol. 5, 1964–1982 (2005).

    Article  CAS  Google Scholar 

  7. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  8. Marshall, W.S. & Kaiser, R.J. Recent advances in the high-speed solid phase synthesis of RNA. Curr. Opin. Chem. Biol. 8, 222–229 (2004).

    Article  CAS  Google Scholar 

  9. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  10. Moore, P.B. et al. Preparation of 5S RNA-related materials for nuclear magnetic resonance and crystallography studies. Methods Enzymol. 164, 158–174 (1988).

    Article  CAS  Google Scholar 

  11. Masson, J.-M. & Miller, J.H. Expression of synthetic tRNA genes under the control of a synthetic promoter. Gene 47, 179–183 (1986).

    Article  CAS  Google Scholar 

  12. Meinnel, T., Mechulam, Y. & Fayat, G. Fast purification of a functional elongator tRNAmet expressed from a synthetic gene in vivo. Nucleic Acids Res. 16, 8095–8096 (1988).

    Article  CAS  Google Scholar 

  13. Tisné, C., Rigourd, M., Marquet, R., Ehresmann, C. & Dardel, F. NMR and biochemical characterization of recombinant human tRNA(Lys)3 expressed in Escherichia coli: identification of posttranscriptional nucleotide modifications required for efficient initiation of HIV-1 reverse transcription. RNA 6, 1403–1412 (2000).

    Article  Google Scholar 

  14. Wallis, N.G., Dardel, F. & Blanquet, S. Heteronuclear NMR studies of the interactions of 15N-labeled methionine-specific transfer RNAs with methionyl-tRNA transformylase. Biochemistry 34, 7668–7677 (1995).

    Article  CAS  Google Scholar 

  15. Deutscher, M.P. Ribonucleases, tRNA nucleotidyltransferase, and the 3′ processing of tRNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 209–240 (1990).

    Article  CAS  Google Scholar 

  16. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    Article  CAS  Google Scholar 

  17. Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K. & Inokuchi, H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli . Proc. Natl. Acad. Sci. USA 91, 9223–9227 (1994).

    Article  CAS  Google Scholar 

  18. Junker-Niepmann, M., Bartenschlager, R. & Schaller, H. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J. 9, 3389–3396 (1990).

    Article  CAS  Google Scholar 

  19. Nassal, M. & Rieger, A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J. Virol. 70, 2764–2773 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Budker, V.G. et al. Photoaffinity reagents for modification of aminoacyl-tRNA synthetases. FEBS Lett. 49, 159–162 (1974).

    Article  CAS  Google Scholar 

  21. Srisawat, C., Goldstein, I.J. & Engelke, D.R. Sephadex-binding RNA ligands: rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res. 29, E4 (2001).

    Article  CAS  Google Scholar 

  22. Srisawat, C. & Engelke, D.R. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7, 632–641 (2001).

    Article  CAS  Google Scholar 

  23. Grate, D. & Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 96, 6131–6136 (1999).

    Article  CAS  Google Scholar 

  24. Paillart, J.C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. A loop-loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc. Natl. Acad. Sci. USA 93, 5572–5577 (1996).

    Article  CAS  Google Scholar 

  25. Guo, P., Zhang, C., Chen, C., Garver, K. & Trottier, M. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell 2, 149–155 (1998).

    Article  CAS  Google Scholar 

  26. Zhang, F. et al. Function of hexameric RNA in packaging of bacteriophage phi 29 DNA in vitro. Mol. Cell 2, 141–147 (1998).

    Article  CAS  Google Scholar 

  27. Raibaud, S. et al. How bacterial ribosomal protein L20 assembles with 23S ribosomal RNA and its own messenger RNA. J. Biol. Chem. 278, 36522–36530 (2003).

    Article  CAS  Google Scholar 

  28. Price, S.R., Ito, N., Oubridge, C., Avis, J.M. & Nagai, K. Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408 (1995).

    Article  CAS  Google Scholar 

  29. Lapham, J. & Crothers, D.M. RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. RNA 2, 289–296 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tisné, C. & Dardel, F. Optimisation of a peptide library for screening specific RNA ligands by flow-injection NMR. Comb. Chem. High Throughput Screen. 5, 523–529 (2002).

    Article  Google Scholar 

  31. Tisné, C., Roques, B.P. & Dardel, F. The annealing mechanism of HIV-1 reverse transcription primer onto the viral genome. J. Biol. Chem. 279, 3588–3595 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the 6th framework program of the European Union (grant FSG-V-RNA). We thank F. Allemand (Institut de Biologie Physico-Chimique, Paris) for the kind gift of purified E. coli L20 protein and C. Tisné and S. Nonin for assistance with the NMR experiments.

Author information

Authors and Affiliations

Authors

Contributions

F.D. was responsible for project planning. L.P. performed the experiments. F.D. and L.P. discussed the results, drafted the paper and revised the manuscript.

Corresponding author

Correspondence to Frédéric Dardel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1-5, Supplementary Table 1. (PDF 1921 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponchon, L., Dardel, F. Recombinant RNA technology: the tRNA scaffold. Nat Methods 4, 571–576 (2007). https://doi.org/10.1038/nmeth1058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing