Abstract
α-synuclein is a major component of intraneuronal protein aggregates constituting a distinctive feature of Parkinson disease. To date, fluorescence imaging of dynamic processes leading to such amyloid deposits in living cells has not been feasible. To address this need, we generated a recombinant α-synuclein (α-synuclein-C4) bearing a tetracysteine target for fluorogenic biarsenical compounds. The biophysical, biochemical and aggregation properties of α-synuclein-C4 matched those of the wild-type protein in vitro and in living cells. We observed aggregation of α-synuclein-C4 transfected or microinjected into cells, particularly under oxidative stress conditions. Fluorescence resonance energy transfer (FRET) between FlAsH and ReAsH confirmed the close association of fibrillized α-synuclein-C4 molecules. α-synuclein-C4 offers the means for directly probing amyloid formation and interactions of α-synuclein with other proteins in living cells, the response to cellular stress and screening drugs for Parkinson disease.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
2D polarization imaging as a low-cost fluorescence method to detect α-synuclein aggregation ex vivo in models of Parkinson’s disease
Communications Biology Open Access 02 October 2018
-
Small Molecules Attenuate the Interplay between Conformational Fluctuations, Early Oligomerization and Amyloidosis of Alpha Synuclein
Scientific Reports Open Access 03 April 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).
Dawson, T.M. & Dawson, V.L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822 (2003).
Shults, C.W. Lewy bodies. Proc. Natl. Acad. Sci. USA 103, 1661–1668 (2006).
Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W. & Buxbaum, J.N. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. USA 101, 2817–2822 (2004).
Lashuel, H.A. et al. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).
Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O.M. & Sudhof, T.C. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383–396 (2005).
Bertoncini, C.W. et al. Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc. Natl. Acad. Sci. USA 102, 1430–1435 (2005).
Uversky, V.N., Li, J. & Fink, A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 276, 44284–44296 (2001).
Hoyer, W. et al. Dependence of alpha-synuclein aggregate morphology on solution conditions. J. Mol. Biol. 322, 383–393 (2002).
Stefanova, N., Klimaschewski, L., Poewe, W., Wenning, G.K. & Reindl, M. Glial cell death induced by overexpression of alpha-synuclein. J. Neurosci. Res. 65, 432–438 (2001).
Sherer, T.B. et al. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22, 7006–7015 (2002).
Vila, M. et al. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74, 721–729 (2000).
Lee, H.J., Shin, S.Y., Choi, C., Lee, Y.H. & Lee, S.J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417 (2002).
Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).
Kim, S., Nollen, E.A., Kitagawa, K., Bindokas, V.P. & Morimoto, R.I. Polyglutamine protein aggregates are dynamic. Nat. Cell Biol. 4, 826–831 (2002).
Outeiro, T.F. & Lindquist, S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).
Fortin, D.L. et al. Neural activity controls the synaptic accumulation of alpha-synuclein. J. Neurosci. 25, 10913–10921 (2005).
Pandey, N., Schmidt, R.E. & Galvin, J.E. The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Exp. Neurol. 197, 515–520 (2006).
McLean, P.J., Kawamata, H. & Hyman, B.T. Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104, 901–912 (2001).
Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).
Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).
Arhel, N. et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods 3, 817–824 (2006).
Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).
Croisier, E. et al. Comparative study of commercially available anti-alpha-synuclein antibodies. Neuropathol. Appl. Neurobiol. 32, 351–356 (2006).
Heise, H. et al. Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. USA 102, 15871–15876 (2005).
Malik, Z. et al. Fourier transform multipixel spectroscopy and spectral imaging for quantitative cytology. J. Microsc. 182, 133–140 (1996).
Fernandez, C.O. et al. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J. 23, 2039–2046 (2004).
Matsuzaki, M. et al. Histochemical features of stress-induced aggregates in alpha-synuclein overexpressing cells. Brain Res. 1004, 83–90 (2004).
Jares-Erijman, E.A. & Jovin, T.M. Imaging molecular interactions in living cells by FRET microscopy. Curr. Opin. Chem. Biol. 10, 409–416 (2006).
Egner, A. & Hell, S.W. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215 (2005).
Spagnuolo, C.C., Vermeij, R.J. & Jares-Erijman, E.A. Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins. J. Am. Chem. Soc. 128, 12040–12041 (2006).
Acknowledgements
We thank R. Rasia for NMR acquisition and analysis, G. Heim for the AFM images, K. Lidke and B. Rieger for the DIPimage routines, J. Post for fruitful discussions, and R. Vermeij for the synthesis of FlAsH and ReAsH. E.A.J.-E. thanks the Volkswagen Foundation (Grants I/79986, I/179987), Max Planck Society (Partner Group grant), ANPCyT, CONICET and UBACyT for financial support. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Center for Molecular Physiology of the Brain (DFG CMPB) in Göttingen (grant to T.M.J.) and by the Max Planck Society. M.J.R. and C.W.B. were recipients of fellowships from the DFG CMPB at the time of this work.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Fig. 1
NMR spectroscopy of 15N-labeled alpha;-synuclein-C4-FlAsH and α-synuclein. (PDF 2126 kb)
Supplementary Fig. 2
Size exclusion chromatography of samples containing α-synuclein, α-synuclein-C4, α-synuclein-C4-FlAsH, and α-synuclein-C4-ReAsH. (PDF 417 kb)
Supplementary Fig. 3
ThioS staining of HeLa cells microinjected with 200 μM α-synuclein-C4-ReAsH. (PDF 2562 kb)
Supplementary Video 1
Confocal imaging 3D reconstruction of a SH-SY5Y cell, with α-synuclein-C4-FlAsH aggregates distributed along the cytoplasm, and α-synuclein-C4-FlAsH also present in the nuclear region. (MOV 1848 kb)
Rights and permissions
About this article
Cite this article
Roberti, M., Bertoncini, C., Klement, R. et al. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nat Methods 4, 345–351 (2007). https://doi.org/10.1038/nmeth1026
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth1026
This article is cited by
-
Reverse engineering Lewy bodies: how far have we come and how far can we go?
Nature Reviews Neuroscience (2021)
-
Small Molecules Attenuate the Interplay between Conformational Fluctuations, Early Oligomerization and Amyloidosis of Alpha Synuclein
Scientific Reports (2018)
-
2D polarization imaging as a low-cost fluorescence method to detect α-synuclein aggregation ex vivo in models of Parkinson’s disease
Communications Biology (2018)
-
The small heat shock proteins αB-crystallin (HSPB5) and Hsp27 (HSPB1) inhibit the intracellular aggregation of α-synuclein
Cell Stress and Chaperones (2017)
-
Advances in chemical labeling of proteins in living cells
Cell and Tissue Research (2015)