Subjects

Abstract

RNA interference (RNAi) has become an important technique for loss-of-gene-function studies in mammalian cells. To achieve reliable results in an RNAi experiment, efficient and specific silencing triggers are required. Here we present genome-wide data sets for the production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for human, mouse and rat. We used an algorithm to predict the optimal region for esiRNA synthesis for every protein-coding gene of these three species. We created a database, RiDDLE, for retrieval of target sequences and primer information. To test this in silico resource experimentally, we generated 16,242 esiRNAs that can be used for RNAi screening in human cells. Comparative analyses with chemically synthesized siRNAs demonstrated a high silencing efficacy of esiRNAs and a 12-fold reduction of downregulated off-target transcripts as detected by microarray analysis. Hence, the presented esiRNA libraries offer an efficient, cost-effective and specific alternative to presently available mammalian RNAi resources.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Gene Expression Omnibus

References

  1. 1.

    et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

  2. 2.

    & Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

  3. 3.

    , & A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

  4. 4.

    , , , & Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

  5. 5.

    et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

  6. 6.

    et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

  7. 7.

    , , , & Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods 3, 715–719 (2006).

  8. 8.

    , & shRNA libraries and their use in cancer genetics. Nat. Methods 3, 701–706 (2006).

  9. 9.

    et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

  10. 10.

    & On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

  11. 11.

    et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

  12. 12.

    & Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 20, 521–524 (2004).

  13. 13.

    et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897 (2004).

  14. 14.

    et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535 (2005).

  15. 15.

    et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

  16. 16.

    et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

  17. 17.

    , , & Enzymatically prepared RNAi libraries. Nat. Methods 3, 696–700 (2006).

  18. 18.

    et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040 (2004).

  19. 19.

    , & DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32, W113–W120 (2004).

  20. 20.

    , , , & Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells. Nat. Methods 2, 779–784 (2005).

  21. 21.

    , , & siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res. 33, e30 (2005).

  22. 22.

    , , & Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol. 348, 883–893 (2005).

  23. 23.

    et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Methods 3, 833–838 (2006).

  24. 24.

    , , & Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363 (2006).

  25. 25.

    et al. Minimizing off-target effects by using diced siRNAs for RNA interference. Journal of RNAi and Gene Silencing 2, 181–194 (2006).

  26. 26.

    & Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing 22, 935–948 (1993).

  27. 27.

    & Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

  28. 28.

    et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

  29. 29.

    et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

  30. 30.

    et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 30, 281–283 (2002).

Download references

Acknowledgements

We thank Eberhard Krausz (Technology Development Studio, Max Planck Institute for Molecular Cell Biology and Genetics) for providing robotics support, and the Rosetta Gene Expression Laboratory for microarray hybridizations. This work was supported by the EU grants “FunGenES” (LSHG-CT-2003-503494), “Mitocheck” (LSHG-CT-2004-503464), by BMBF grant PTJ-BIO/0313130, the NGFN2 grant SMP-RNAi (01GR0402) and the Max Planck Society.

Author information

Author notes

    • Ralf Kittler

    Present address: Department of Human Genetics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.

    • Ralf Kittler
    •  & Vineeth Surendranath

    These authors contributed equally to this work.

Affiliations

  1. Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.

    • Ralf Kittler
    • , Vineeth Surendranath
    • , Anne-Kristin Heninger
    • , Mikolaj Slabicki
    • , Mirko Theis
    • , Gabriele Putz
    • , Kristin Franke
    • , Antonio Caldarelli
    • , Hannes Grabner
    • , Karol Kozak
    • , Jan Wagner
    • , Bianca Habermann
    •  & Frank Buchholz
  2. Scionics Computer Innovation, GmbH, Tatzberg 47-51, D-01307 Dresden, Germany.

    • Vineeth Surendranath
    •  & Bianca Habermann
  3. Technology Development Studio, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.

    • Hannes Grabner
    • , Karol Kozak
    •  & Jan Wagner
  4. RZPD-Ressourcenzentrum für Genomforschung, Im Neuenheimer Feld 506, D-69120 Heidelberg, Germany.

    • Effi Rees
    •  & Bernd Korn
  5. Cenix BioScience GmbH, Tatzberg 47, Dresden 01307, Germany.

    • Corina Frenzel
    • , Christoph Sachse
    •  & Birte Sönnichsen
  6. Rosetta Inpharmatics LLC, 12040 115th Avenue NE, Kirkland, Washington 98034, USA.

    • Jie Guo
    • , Janell Schelter
    • , Julja Burchard
    • , Peter S Linsley
    •  & Aimee L Jackson

Authors

  1. Search for Ralf Kittler in:

  2. Search for Vineeth Surendranath in:

  3. Search for Anne-Kristin Heninger in:

  4. Search for Mikolaj Slabicki in:

  5. Search for Mirko Theis in:

  6. Search for Gabriele Putz in:

  7. Search for Kristin Franke in:

  8. Search for Antonio Caldarelli in:

  9. Search for Hannes Grabner in:

  10. Search for Karol Kozak in:

  11. Search for Jan Wagner in:

  12. Search for Effi Rees in:

  13. Search for Bernd Korn in:

  14. Search for Corina Frenzel in:

  15. Search for Christoph Sachse in:

  16. Search for Birte Sönnichsen in:

  17. Search for Jie Guo in:

  18. Search for Janell Schelter in:

  19. Search for Julja Burchard in:

  20. Search for Peter S Linsley in:

  21. Search for Aimee L Jackson in:

  22. Search for Bianca Habermann in:

  23. Search for Frank Buchholz in:

Contributions

R.K., A.K.H., M.S., M.T., G.P., K.F. and A.C. generated the human esiRNA library; V.S. and B.H. performed the in silico analyses; H.G. and J.W. performed automation; K.K. generated LIMS; E.R. and B.K. generated esiRNAs; C.F. performed QPCRs; C.S. and B.S. performed and analyzed QPCRs; J.G., J.S., J.B. and A.L.J. performed and analyzed microarray studies; P.S.L. analyzed microarray data; R.K. and F.B. designed and analyzed the experiments; R.K., V.S., A.L.J., B.H. and F.B. wrote the paper.

Competing interests

V.S. and B.H. work for Scionics Computer Innovation.

E.R. and B.K. work for the RZPD.

C.F., C.S. and B.S. work for Cenix Bioscience.

J.G., J.S., J.B., P.S.L. and A.L.J. work for Rosetta Inpharmatics.

Corresponding authors

Correspondence to Bianca Habermann or Frank Buchholz.

Supplementary information

PDF files

  1. 1.

    Supplementary Fig. 1

    Correlation of silencing efficacy between esiRNAs and siRNAs.

  2. 2.

    Supplementary Fig. 2

    No induction of interferon response genes by esiRNA and siRNA.

  3. 3.

    Supplementary Fig. 3

    Comparative analysis of off-target regulation.

  4. 4.

    Supplementary Table 1

    Primer sequences used to generate esiRNAs.

  5. 5.

    Supplementary Table 2

    Sequences of employed siRNAs.

  6. 6.

    Supplementary Table 3

    Primers employed for QPCRs.

  7. 7.

    Supplementary Methods

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmeth1025

Further reading