Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic incorporation of unnatural amino acids into proteins in mammalian cells

Abstract

We developed a general approach that allows unnatural amino acids with diverse physicochemical and biological properties to be genetically encoded in mammalian cells. A mutant Escherichia coli aminoacyl-tRNA synthetase (aaRS) is first evolved in yeast to selectively aminoacylate its tRNA with the unnatural amino acid of interest. This mutant aaRS together with an amber suppressor tRNA from Bacillus stearothermophilus is then used to site-specifically incorporate the unnatural amino acid into a protein in mammalian cells in response to an amber nonsense codon. We independently incorporated six unnatural amino acids into GFP expressed in CHO cells with efficiencies up to 1 μg protein per 2 × 107 cells; mass spectrometry confirmed a high translational fidelity for the unnatural amino acid. This methodology should facilitate the introduction of biological probes into proteins for cellular studies and may ultimately facilitate the synthesis of therapeutic proteins containing unnatural amino acids in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amber suppression of six BstRNATyrCUA-EcTyrRS pairs in T-REx CHO and T-REx 293 cells.
Figure 2: Plasmid maps.
Figure 3: Annotated tandem MS spectra of the peptide FSVSGEGEGDATY*GK from wild-type GFP and GFP-pMpa.
Figure 4: Annotated tandem MS spectra of the peptide FSUSGEGEGDATY*GK from GFP-pApa, GFP-pBpa, GFP-pAzpa and GFP-pPpa.

Similar content being viewed by others

References

  1. Monahan, S.L., Lester, H.A. & Dougherty, D.A. Site-specific incorporation of unnatural amino acids into receptors expressed in mammalian cells. Chem. Biol. 10, 573–580 (2003).

    Article  CAS  Google Scholar 

  2. Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res. 30, 4692–4699 (2002).

    Article  CAS  Google Scholar 

  3. Zhang, Z. et al. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 8882–8887 (2004).

    Article  CAS  Google Scholar 

  4. Zhang, D., Vaidehi, N., Goddard, W.A., III, Danzer, J.F. & Debe, D. Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine. Proc. Natl. Acad. Sci. USA 99, 6579–6584 (2002).

    Article  CAS  Google Scholar 

  5. Turner, J.M., Graziano, J., Spraggon, G. & Schultz, P.G. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 127, 14976–14977 (2005).

    Article  CAS  Google Scholar 

  6. Turner, J.M., Graziano, J., Spraggon, G. & Schultz, P.G. Structural plasticity of an aminoacyl-tRNA synthetase active site. Proc. Natl. Acad. Sci. USA 103, 6483–6488 (2006).

    Article  CAS  Google Scholar 

  7. Kiga, D. et al. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc. Natl. Acad. Sci. USA 99, 9715–9720 (2002).

    Article  CAS  Google Scholar 

  8. Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  9. Xie, J. & Schultz, P.G. A chemical toolkit for proteins—an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).

    Article  CAS  Google Scholar 

  10. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  11. Santoro, S.W., Anderson, J.C., Lakshman, V. & Schultz, P.G. An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. Nucleic Acids Res. 31, 6700–6709 (2003).

    Article  CAS  Google Scholar 

  12. Anderson, J.C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566–7571 (2004).

    Article  CAS  Google Scholar 

  13. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  Google Scholar 

  14. Chin, J.W., Cropp, T.A., Chu, S., Meggers, E. & Schultz, P.G. Progress toward an expanded eukaryotic genetic code. Chem. Biol. 10, 511–519 (2003).

    Article  CAS  Google Scholar 

  15. Wu, N., Deiters, A., Cropp, T.A., King, D. & Schultz, P.G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126, 14306–14307 (2004).

    Article  CAS  Google Scholar 

  16. Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    Article  CAS  Google Scholar 

  17. Wang, J., Xie, J. & Schultz, P.G. A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128, 8738–8739 (2006).

    Article  CAS  Google Scholar 

  18. Zhang, Z. et al. A new strategy for the synthesis of glycoproteins. Science 303, 371–373 (2004).

    Article  CAS  Google Scholar 

  19. Liu, C. & Schultz, P.G. Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat. Biotechnol. 24, 1436–1440 (2006).

    Article  CAS  Google Scholar 

  20. Alfonta, L., Zhang, Z., Uryu, S., Loo, J.A. & Schultz, P.G. Site-specific incorporation of a redox-active amino acid into proteins. J. Am. Chem. Soc. 125, 14662–14663 (2003).

    Article  CAS  Google Scholar 

  21. Wang, L. & Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Edn Engl. 44, 34–66 (2004).

    Article  Google Scholar 

  22. Bonnefond, L., Giege, R. & Rudinger-Thirion, J. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems. Biochimie 87, 873–883 (2005).

    Article  CAS  Google Scholar 

  23. Hino, N. et al. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat. Methods 2, 201–206 (2005).

    Article  CAS  Google Scholar 

  24. Sprague, K.U. Transcription of eukaryotic tRNA genes (AMS Press, Washington, DC, 1994).

  25. Bedouelle, H. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. Biochimie 72, 589–598 (1990).

    Article  CAS  Google Scholar 

  26. Hou, Y.M. & Schimmel, P. Modeling with in vitro kinetic parameters for the elaboration of transfer RNA identity in vivo. Biochemistry 28, 4942–4947 (1989).

    Article  CAS  Google Scholar 

  27. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  CAS  Google Scholar 

  28. Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc. 125, 11782–11783 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a US National Institutes of Health grant GM62159. This is manuscript 18455 of the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

W.L. developed and evaluated the method, A.B. carried out the MS analysis, Shou C. and Shuibing C. helped with protein characterization, and W.L. and P.G.S. designed the project, analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to Peter G Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amber suppression is dependent upon both the EcTyrRS and BstRNATyrCUA genes in both T-rex CHO and T-rex 293 cells. (PDF 51 kb)

Supplementary Fig. 2

Western blot analysis of expression of six EcTyrRS variants in T-rexTM CHO and 293 cells. (PDF 46 kb)

Supplementary Fig. 3

ESI-TOF MS spectrum of affinity purified wild-type GFP. (PDF 14 kb)

Supplementary Fig. 4

Annotated tandem MS spectra of the peptide FSVSGEGEGDATY*GK from mutant GFP containing pAzpa. (PDF 56 kb)

Supplementary Methods (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Brock, A., Chen, S. et al. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4, 239–244 (2007). https://doi.org/10.1038/nmeth1016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing