Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubc9 fusion–directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation

Abstract

Although small ubiquitin-like modifier (SUMO) is conjugated to proteins involved in diverse cellular processes, the functional analysis of SUMOylated proteins is often hampered by low levels of specific SUMOylated proteins in the cell. Here we describe a SUMO-conjugating enzyme (Ubc9) fusion–directed SUMOylation (UFDS) system, which allows efficient and selective in vivo SUMOylation of proteins. Although SUMOylation of overexpressed p53 and STAT1 was difficult to detect in HEK293 cells, up to 40% of p53 and STAT1 were conjugated with endogenous SUMO when fused to Ubc9. We verified the specificity of UFDS using SUMOylation-site mutants and showed that the method is not dependent on SUMO ligases. Using UFDS we demonstrated that SUMOylation of STAT1 inhibits its phosphorylation at Tyr701 and discovered p53 multi-SUMOylation in vivo. We propose that UFDS will be useful for the analysis of function of SUMOylation in protein interactions, subcellular localization as well as enzymatic activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubc9-fusion directed SUMOylation (UFDS).
Figure 2: Comparison of SUMOylation of endogenous p53 and STAT1, and Ubc9 fused to p53 or STAT1.
Figure 3: UFDS is dependent on the catalytic activity of the fused Ubc9.
Figure 4: UFDS is independent of SUMO-ligases.
Figure 5: SUMOylation of STAT1-Ubc9 on Lys703 inhibits IFN-β–induced in vivo phosphorylation at Tyr701.
Figure 6: SUMOylation of STAT1-Ubc9 on Lys703 inhibits phosphorylation of Tyr701 in an in vitro JAK3 kinase assay.

Similar content being viewed by others

References

  1. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

    Article  CAS  Google Scholar 

  2. Desterro, J.M., Rodriguez, M.S., Kemp, G.D. & Hay, R.T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618–10624 (1999).

    Article  CAS  Google Scholar 

  3. Gong, L., Li, B., Millas, S. & Yeh, E.T. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185–189 (1999).

    Article  CAS  Google Scholar 

  4. Johnson, E.S., Schwienhorst, I., Dohmen, R.J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  Google Scholar 

  5. Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N. & Yasuda, H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 254, 693–698 (1999).

    Article  CAS  Google Scholar 

  6. Desterro, J.M., Thomson, J. & Hay, R.T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417, 297–300 (1997).

    Article  CAS  Google Scholar 

  7. Johnson, E.S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802 (1997).

    Article  CAS  Google Scholar 

  8. Rodriguez, M.S., Dargemont, C. & Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  Google Scholar 

  9. Hochstrasser, M. SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5–8 (2001).

    Article  CAS  Google Scholar 

  10. Hay, R.T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    Article  CAS  Google Scholar 

  11. Li, S.J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  Google Scholar 

  12. Yeh, E.T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14 (2000).

    Article  CAS  Google Scholar 

  13. Dohmen, R.J. SUMO protein modification. Biochim. Biophys. Acta 1695, 113–131 (2004).

    Article  Google Scholar 

  14. Li, T. et al. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. USA 101, 8551–8556 (2004).

    Article  CAS  Google Scholar 

  15. Zhao, Y., Kwon, S.W., Anselmo, A., Kaur, K. & White, M.A. Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J. Biol. Chem. 279, 20999–21002 (2004).

    Article  CAS  Google Scholar 

  16. Gocke, C.B., Yu, H. & Kang, J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012 (2005).

    Article  CAS  Google Scholar 

  17. Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T.K. & Melchior, F. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11, 984–991 (2004).

    Article  CAS  Google Scholar 

  18. Shuai, K. et al. Polypeptide signaling to the nucleus through tyrosine phosphorylation of JAK and STAT proteins. Nature 366, 580–583 (1993).

    Article  CAS  Google Scholar 

  19. Shuai, K., Stark, G.R., Kerr, I.M. & Darnell, J.E. A single phosphotyrosine residue of Stat1 required for gene activation by interferon gamma. Science 261, 1744–1746 (1993).

    Article  CAS  Google Scholar 

  20. Shuai, K. et al. Interferon activation of the transcription factor Stat1 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76, 821–828 (1994).

    Article  CAS  Google Scholar 

  21. Ungureanu, D., Vanhatupa, S., Gronholm, J., Palvimo, J.J. & Silvennoinen, O. SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood 106, 224–226 (2005).

    Article  CAS  Google Scholar 

  22. Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  Google Scholar 

  23. Gocke, C.B., Yu, H. & Kang, J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012 (2005).

    Article  CAS  Google Scholar 

  24. Yang, M., Hsu, C.T., Ting, C.Y., Liu, L.F. & Hwang, J. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J. Biol. Chem. 281, 8264–8274 (2006).

    Article  CAS  Google Scholar 

  25. Melchior, F. & Hengst, L. SUMO-1 and p53. Cell Cycle 1, 245–249 (2002).

    Article  CAS  Google Scholar 

  26. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462–6471 (1999).

    Article  CAS  Google Scholar 

  27. Rodriguez, M.S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  Google Scholar 

  28. Muller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem. 275, 13321–13329 (2000).

    Article  CAS  Google Scholar 

  29. Kwek, S.S., Derry, J., Tyner, A.L., Shen, Z. & Gudkov, A.V. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20, 2587–2599 (2001).

    Article  CAS  Google Scholar 

  30. Gresko, E., Moller, A., Roscic, A. & Schmitz, M.L. Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability. Biochem. Biophys. Res. Commun. 329, 1293–1299 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Münster-Kühnel (Hannover Medical School) for the expression plasmids pEGFP-C1-PIASxß and the pGADT7-InhSTAT3 (PIAS3), F. Melchior (University of Göttingen) for the pGST-RanBPΔFG, B. Valdez (Baylor College of Medicine) for the pCMV-mGBP (PIAS1), D. Wotton (University of Virginia) for the pFLAG-PC2, R. Bernards (Netherlands Cancer Institute) for the pRc/CMV-HA-Ubc9, J.E. Darnell (Rockefeller University) for the pRc/CMV-STAT1α, B. Vogelstein (Johns Hopkins Oncology Center) for the pC53-SN3 and the company ProQinase (Freiburg) for the JAK3 kinase. We also thank A. Kotlyarov and E. Hitti (Hannover Medical School) for helpful discussions, and T. Binz (Hannover Medical School) for critical reading of the manuscript. This work was supported by the Hannover Medical School Hochschulinterne Leistungsförderung program (to R.N.).

Author information

Authors and Affiliations

Authors

Contributions

A.J. performed the experiments, J.K. performed the experiments and analyzed the data, F.H. performed the experiments, M.F. and B.K. contributed reagents and materials, M.G. discussed experiments and wrote the paper, R.N. conceived and designed the experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Rainer Niedenthal.

Ethics declarations

Competing interests

M.F. is an employee of MediGene AG and is an owner of stock options of MediGene AG.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobs, A., Koehnke, J., Himstedt, F. et al. Ubc9 fusion–directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods 4, 245–250 (2007). https://doi.org/10.1038/nmeth1006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing