From cudgel to scalpel: toward precise neural control with optogenetics

Article metrics

Optogenetics is routinely used to activate and inactivate genetically defined neuronal populations in vivo. A second optogenetic revolution will occur when spatially distributed and sparse neural assemblies can be precisely manipulated in behaving animals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Manipulating neural assemblies with light.
Figure 2: Methods for two-photon photostimulation with ChR2.
Figure 3: Effects of dense packing of neural element on the precision of photostimulation.
Figure 4: Hypothetical scheme to manipulate distributed, sparse assemblies.

References

  1. 1

    O'Connor, D.H., Huber, D. & Svoboda, K. Nature 461, 923–929 (2009).

  2. 2

    Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Nat Neurosci 13, 1433–1440 (2010).

  3. 3

    Deisseroth, K. Nat. Methods 8, 26–29 (2011).

  4. 4

    Nagel, G. et al. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

  5. 5

    Han, X. & Boyden, E.S. PLoS ONE 2, e299 (2007).

  6. 6

    Zhang, F. et al. Nature 446, 633–639 (2007).

  7. 7

    Hegemann, P. & Möglich, A. Nat. Methods 8, 39–42 (2011).

  8. 8

    Tian, L. et al. Nat. Methods 6, 875–881 (2009).

  9. 9

    O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neuron 67, 1048–1061 (2010).

  10. 10

    Tsai, H.C. et al. Science 324, 1080–1084 (2009).

  11. 11

    Huber, D. et al. Nature 451, 61–64 (2008).

  12. 12

    Lima, S.Q., Hromadka, T., Znamenskiy, P. & Zador, A.M. PLoS ONE 4, e6099 (2009).

  13. 13

    Buzsaki, G. Neuron 68, 362–385 (2010).

  14. 14

    Helmchen, F. & Denk, W. Nat. Methods 2, 932–940 (2005).

  15. 15

    Rickgauer, J.P. & Tank, D.W. Proc. Natl. Acad. Sci. 106, 15025–15030 (2009).

  16. 16

    Papagiakoumou, E. et al. Nat. Methods 7, 848–854 (2010).

  17. 17

    Andrasfalvy, B.K., Zemelman, B.V., Tang, J. & Vaziri, A. Proc. Natl. Acad. Sci. USA 107, 11981–11986 (2010).

  18. 18

    Mishchenko, Y. et al. Neuron 67, 1009–1020 (2010).

  19. 19

    Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Nat. Neurosci. 10, 663–668 (2007).

  20. 20

    Lewis Jr., T.L., Mao, T., Svoboda, K. & Arnold, D.B. Nat. Neurosci. 12, 568–576 (2009).

  21. 21

    Grubb, M.S. & Burrone, J. PLoS ONE 5, e13761 (2010).

  22. 22

    Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Science 317, 1230–1233 (2007).

  23. 23

    Guzowski, J.F. et al. Proc. Natl. Acad. Sci. USA 103, 1077–1082 (2006).

  24. 24

    Kennedy, M.J. et al. Nat. Methods 7, 973–975 (2010).

Download references

Acknowledgements

We thank A. Vaziri, M. Hooks, D. Tank, P. Rickgauer and L. Petreanu for useful discussions, and M., Chklovskii for the reconstruction in Figure 3b.

Author information

Correspondence to Karel Svoboda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peron, S., Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8, 30–34 (2011) doi:10.1038/nmeth.f.325

Download citation

Further reading