Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein crystallization: from purified protein to diffraction-quality crystal

Abstract

Determining the structure of biological macromolecules by X-ray crystallography involves a series of steps: selection of the target molecule; cloning, expression, purification and crystallization; collection of diffraction data and determination of atomic positions. However, even when pure soluble protein is available, producing high-quality crystals remains a major bottleneck in structure determination. Here we present a guide for the non-expert to screen for appropriate crystallization conditions and optimize diffraction-quality crystal growth.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The pipeline from gene to structure, illustrating the steps from target selection to structure determination and beyond.
Figure 2: Schematic illustration of a protein crystallization phase diagram.

References

  1. McPherson, A. Crystallization of Biological Macromolecules (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  2. Bergfors, T. Protein Crystallization: Techniques, Strategies, and Tips (International University Line, La Jolla, California, 1999).

    Google Scholar 

  3. Derewenda, Z.S. & Vekilov, P.G. Entropy and surface engineering in protein crystallization. Acta Crystallogr. D 62, 116–124 (2006).

    Article  PubMed  Google Scholar 

  4. Chayen, N.E. Protein crystallization for genomics: throughput versus output. J. Struct. Funct. Genomics 4, 115–120 (2003).

    CAS  Article  PubMed  Google Scholar 

  5. Jancarik, J. & Kim, S.H. Sparse-matrix sampling—a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411 (1991).

    CAS  Article  Google Scholar 

  6. Gilliland, G.L., Tung, M., Blakeslee, D.M. & Ladner, J.E. Biological Macromolecule Crystallization Database, version-3.0—new features, data and the NASA Archive for Protein Crystal-Growth Data. Acta Crystallogr. D 50, 408–413 (1994).

    CAS  Article  PubMed  Google Scholar 

  7. Brzozowski, A.M. & Walton, J. Clear strategy screens for macromolecular crystallization. J. Appl. Cryst. 34, 97–101 (2001).

    CAS  Article  Google Scholar 

  8. DeLucas, L.J. et al. Protein crystallization: virtual screening and optimization. Prog. Biophys. Mol. Biol. 88, 285–309 (2005).

    CAS  Article  PubMed  Google Scholar 

  9. Page, R. & Stevens, R.C. Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34, 373–389 (2004).

    CAS  Article  PubMed  Google Scholar 

  10. Rupp, B. & Wang, J. Predictive models for protein crystallization. Methods 34, 390–407 (2004).

    CAS  Article  PubMed  Google Scholar 

  11. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol design and validation. J. Appl. Cryst. 36, 308–314 (2003).

    CAS  Article  Google Scholar 

  12. Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170–179 (2003).

    CAS  Article  PubMed  Google Scholar 

  13. Bard, J., Ercolani, K., Svenson, K., Olland, A. & Somers, W. Automated systems for protein crystallization. Methods 34, 329–347 (2004).

    CAS  Article  PubMed  Google Scholar 

  14. Wilson, J. Automated classification of images from crystallization experiments. Adv. Data Mining 4065, 459–473 (2006).

    Google Scholar 

  15. Chayen, N.E., Stewart, P.D.S., Maeder, D.L. & Blow, D.M. An automated system for microbatch protein crystallization and screening. J. Appl. Cryst. 23, 297–302 (1990).

    CAS  Article  Google Scholar 

  16. Chayen, N.E. Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Crystallogr. D 54, 8–15 (1998).

    CAS  Article  PubMed  Google Scholar 

  17. Garcia-Ruiz, J.M. & Ng, J.D. Counterdiffusion capillary crystallization for high-throughput applications. in Protein Crystallization Strategies for Structural Genomics (ed. Chayen, N.E.) 111–126 (International University Line, La Jolla, California, 2007).

    Google Scholar 

  18. Moreno, A., Saridakis, E. & Chayen, N.E. Combination of oils and gels for enhancing the growth of protein crystals. J. Appl. Cryst. 35, 140–142 (2002).

    CAS  Article  Google Scholar 

  19. Hansen, C. & Quake, S.R. Microfluidics in structural biology: smaller, faster... better. Curr. Opin. Struct. Biol. 13, 538–544 (2003).

    CAS  Article  PubMed  Google Scholar 

  20. Sommer, M.O.A. & Larsen, S. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator. J. Synchrotron Rad. 12, 779–785 (2005).

    CAS  Article  Google Scholar 

  21. Zheng, B., Gerdts, C.J. & Ismagilov, R.F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Curr. Opin. Struct. Biol. 15, 548–555 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Ducruix, A. & Giegé, R. (eds.) Crystallization of Nucleic Acids and Proteins (Oxford University Press, Oxford, 1999).

    Google Scholar 

  23. Chayen, N.E. et al. Trends and challenges in experimental macromolecular crystallography. Q. Rev. Biophys. 29, 227–278 (1996).

    CAS  Article  PubMed  Google Scholar 

  24. Chayen, N.E. Methods for separating nucleation and growth in protein crystallization. Prog. Biophys. Mol. Biol. 88, 329–337 (2005).

    CAS  Article  PubMed  Google Scholar 

  25. Ataka, M. Protein crystal growth: an approach based on phase diagram determination. Phase Transit. 45, 205–219 (1993).

    CAS  Article  Google Scholar 

  26. Stura, E.A. & Wilson, I.A. Application of the streak seeding technique in protein crystallization. J. Cryst. Growth 110, 270–282 (1991).

    CAS  Article  Google Scholar 

  27. Chayen, N.E. Automation of non-conventional crystallization techniques for screening and optimization. in Macromolecular Crystallography: Conventional and High-Throughput Methods (eds. Sanderson, M.R. & Skelly, J.V.) 45–58 (Oxford University Press, Oxford, 2007).

    Chapter  Google Scholar 

  28. Bergfors, T. Seeds to crystals. J. Struct. Biol. 142, 66–76 (2003).

    CAS  Article  PubMed  Google Scholar 

  29. McPherson, A. & Shlichta, P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 239, 385–387 (1988).

    CAS  Article  PubMed  Google Scholar 

  30. Falini, G., Fermani, S., Conforti, G. & Ripamonti, A. Protein crystallization on chemically modified mica surfaces. Acta Crystallogr. D 58, 1649–1652 (2002).

    Article  PubMed  Google Scholar 

  31. Nanev, C.N. & Tsekova, D. Heterogeneous nucleation of hen-egg-white lysozyme-molecular approach. Cryst. Res. Technol. 35, 189–195 (2000).

    CAS  Article  Google Scholar 

  32. Sanjoh, A., Tsukihara, T. & Gorti, S. Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening. J. Cryst. Growth 232, 618–628 (2001).

    CAS  Article  Google Scholar 

  33. D'Arcy, A., Mac Sweeney, A. & Habera, A. Modified microbatch and seeding in protein crystallization experiments. J. Synchrotron Rad. 11, 24–26 (2004).

    CAS  Article  Google Scholar 

  34. Chayen, N.E., Saridakis, E., El-Bahar, R. & Nemirovsky, Y. Porous silicon: an effective nucleation-inducing material for protein crystallization. J. Mol. Biol. 312, 591–595 (2001).

    CAS  Article  PubMed  Google Scholar 

  35. Chayen, N.E., Saridakis, E. & Sear, R.P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl. Acad. Sci. USA 103, 597–601 (2006).

    CAS  Article  PubMed  Google Scholar 

  36. Saridakis, E.E.G., Stewart, P.D.S., Lloyd, L.F. & Blow, D.M. Phase-diagram and dilution experiments in the crystallization of carboxypeptidase G2 . Acta Crystallogr. D 50, 293–297 (1994).

    CAS  Article  PubMed  Google Scholar 

  37. Saridakis, E. & Chayen, N.E. Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. Biophys. J. 84, 1218–1222 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Blow, D.M., Chayen, N.E., Lloyd, L.F. & Saridakis, E. Control of nucleation of protein crystals. Protein Sci. 3, 1638–1643 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Krengel, U. et al. Preliminary X-ray crystallographic analysis of the secreted chorismate mutase from Mycobacterium tuberculosis: a tricky crystallization problem solved. Acta Crystallogr. F 62, 441–445 (2006).

    CAS  Article  Google Scholar 

  40. Gerdts, C.J. et al. Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew. Chem. Int. Ed. 45, 8156–8160 (2006).

    CAS  Article  Google Scholar 

  41. Karpowich, N. et al. Crystal structures of MJ1267 reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9, 571–586 (2001).

    CAS  Article  PubMed  Google Scholar 

  42. Garcia-Ruiz, J.M., Gonzalez-Ramirez, L.A., Gavira, J.A. & Otalora, F. Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques. Acta Crystallogr. D 58, 1638–1642 (2002).

    Article  PubMed  Google Scholar 

  43. Snell, E.H. & Helliwell, J.R. Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68, 799–853 (2005).

    CAS  Article  Google Scholar 

  44. Heijna, M.C.R. et al. Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007).

    Article  Google Scholar 

  45. Talreja, S., Kim, D.Y., Mirarefi, A.Y., Zukoski, C.F. & Kenis, P.J.A. Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform. J. Appl. Cryst. 38, 988–995 (2005).

    CAS  Article  Google Scholar 

  46. Chayen, N.E. A novel technique to control the rate of vapour diffusion, giving larger protein crystals. J. Appl. Cryst. 30, 198–202 (1997).

    CAS  Article  Google Scholar 

  47. Mayans, O. et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863–869 (1998).

    CAS  Article  PubMed  Google Scholar 

  48. Isupov, M.N. et al. Crystallization and preliminary X-ray diffraction studies of a fungal hydrolase from Ophiostoma novo-ulmi. Acta Crystallogr. D 60, 1879–1882 (2004).

    Article  PubMed  Google Scholar 

  49. Schubot, F.D., Cherry, S., Austin, B.P., Tropea, J.E. & Waugh, D.S. Crystal structure of the protease-resistant core domain of Yersinia pestis virulence factor YopR. Protein Sci. 14, 1679–1683 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Khurshid, S., Govada, L. & Chayen, N.E. Dynamic screening experiments to maximize hits for crystallization. Cryst. Growth Des. 7, 2171–2175 (2007).

    CAS  Article  Google Scholar 

  51. D'Arcy, A. Crystallizing proteins—a rational approach? Acta Crystallogr. D 50, 469–471 (1994).

    CAS  Article  PubMed  Google Scholar 

  52. Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W.M. & Chayen, N.E. Separating nucleation and growth in protein crystallization using dynamic light scattering. Acta Crystallogr. D 58, 1597–1600 (2002).

    Article  PubMed  Google Scholar 

  53. Wilson, W.W. Light scattering as a diagnostic for protein crystal growth—a practical approach. J. Struct. Biol. 142, 56–65 (2003).

    Article  PubMed  Google Scholar 

  54. Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440 (2001).

    CAS  Article  PubMed  Google Scholar 

  55. Chayen, N.E. Turning protein crystallization from an art into a science. Curr. Opin. Struct. Biol. 14, 577–583 (2004).

    CAS  Article  PubMed  Google Scholar 

  56. Nollert, P. From test tube to plate: a simple procedure for the rapid preparation of microcrystallization experiments using the cubic phase method. J. Appl. Cryst. 35, 637–640 (2002).

    CAS  Article  Google Scholar 

  57. Peddi, A. et al. M. High-throughput automated system for crystallizing membrane proteins in lipidic mesophases. IEEE Trans. Automat. Sci. Eng. 4, 129–140 (2007).

    Article  Google Scholar 

  58. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P. & Landau. E.M. X-Ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997).

    CAS  Article  PubMed  Google Scholar 

  59. Cherozov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318, 1258–1265 (2007).

    Article  Google Scholar 

  60. Snider, H., Barrends, T. & Dijkstra, D. Crystallization of phospholipase A in two biological oligomerization states. in Methods and Results in Crystallization of Membrane Proteins (ed. Iwata, S.) 265–278 (International University Line, La Jolla, California, 2003).

    Google Scholar 

  61. Stock, D., Leslie, A.G. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Engineering and Physical Sciences Research Council UK (EP/D501113/1) and the European Commission OptiCryst project LSHG-CT-2006-037793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi E Chayen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Note 1, Supplementary Protocols 1–2 (PDF 514 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chayen, N., Saridakis, E. Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5, 147–153 (2008). https://doi.org/10.1038/nmeth.f.203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.f.203

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing