Protein production and purification

An Addendum to this article was published on 01 April 2008

This article has been updated

Abstract

NOTE: In the version of this Review initially published, an author (B. Martin Hallberg) was left off of the author list. This information has been added to the HTML and PDF versions of the Review.

In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus 'what to try first' strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Solubility as a function of construct length.
Figure 2: Gel filtration profiles.

Change history

  • 04 March 2008

    In the version of this Review initially published, an author (B. Martin Hallberg) was left off of the author list. This information has been added to the HTML and PDF versions of the Review.

References

  1. 1

    Sauder, J.M. et al. High throughput protein production and crystallization at NYSGXRC. in Structural Proteomics: High-Throughput Methods Vol. 426 (eds. B. Kobe, M.Guss & H. Thomas) 561–575 (Humana Press, Totowa, New Jersey, USA, 2008).

    Google Scholar 

  2. 2

    Büssow, K. et al. Structural genomics of human proteins-target selection and generation of a public catalogue of expression clones. Microb. Cell Fact. 4, 21 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3

    Heinemann, U., Büssow, K., Mueller, U. & Umbach, P. Facilities and methods for the high-throughput crystal structural analysis of human proteins. Accounts Chem. Res. 36, 157–163 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Banci, L. et al. First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value. Acta Crystallogr. D62, 1208–1217 (2006).

    CAS  Google Scholar 

  5. 5

    Aricescu, A.R. et al. Eukaryotic expression: developments for structural proteomics. Acta Crystallogr. D62, 1114–1124 (2006).

    CAS  Google Scholar 

  6. 6

    Heinemann, U. Establishing a structural genomics platform: The Berlin-based Protein Structure Factory. Gene Funct. Dis. 3, 25–32 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Büssow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8

    Bartlam, M., Xu, Y. & Rao, Z. Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases. J. Struct. Funct. Genomics 8, 85–97 (2007).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Gong, W.M. et al. Structural genomics efforts at the Chinese Academy of Sciences and Peking University. J. Struct. Funct. Genomics 4, 137–139 (2003).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Albeck, S. et al. Three-dimensional structure determination of proteins related to human health in their functional context at The Israel Structural Proteomics Center (ISPC). Acta Crystallogr. D61, 1364–1372 (2005).

    CAS  Google Scholar 

  11. 11

    Lesley, S.A. et al. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99, 11664–11669 (2002).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Montelione, G.T., Zheng, D., Huang, Y.J., Gunsalus, K.C. & Szyperski, T. Protein NMR spectroscopy in structural genomics. Nat. Struct. Biol. 7 (Suppl.), 982–985 (2000).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Acton, T.B. et al. Robotic cloning and Protein Production Platform of the Northeast Structural Genomics Consortium. Methods Enzymol. 394, 210–243 (2005).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Alzari, P.M. et al. Implementation of semi-automated cloning and prokaryotic expression screening: the impact of SPINE. Acta Crystallogr. D62, 1103–1113 (2006).

    CAS  Google Scholar 

  15. 15

    Gileadi, O. The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. J. Struct. Funct. Genomics 8, 107–119 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Gileadi, O. et al. Methods in Molecular Biology. in Structural Proteomics: High-Throughput Methods. Vol. 426 (eds., B. Kobe, M. Guss & T. Huber) 222–246 (Humana Press, Totowa, New Jersey, USA, 2008).

    Google Scholar 

  17. 17

    You, J., Cohen, R.E. & Pickart, C.M. Construct for high-level expression and low misincorporation of lysine for arginine during expression of pET-encoded eukaryotic proteins in Escherichia coli. Biotechniques 27, 950–954 (1999).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Klock, H.E., Koesema, E.J., Knuth, M.W. & Lesley, S.A. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins published online, doi: 10.1002/prot.21786 (14 November 2007).

  19. 19

    Gräslund, S. et al. The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr. Purif. (in the press).

  20. 20

    Ginalski, K., Elofsson, A., Fischer, D. & Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19, 1015–1018 (2003).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F. & Jones, D.T. The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139 (2004).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Yang, Z.R., Thomson, R., McNeil, P. & Esnouf, R.M. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376 (2005).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Cornvik, T. et al. An efficient and generic strategy for producing soluble human proteins and domains in E. coli by screening construct libraries. Proteins 65, 266–273 (2006).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Gao, X. et al. High-throughput limited proteolysis/mass spectrometry for protein domain elucidation. J. Struct. Funct. Genomics 6, 129–134 (2005).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Hartley, J.L., Temple, G.F. & Brasch, M.A. DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Aslanidis, C. & de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Landy, A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913–949 (1989).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Guo, F., Gopaul, D.N. & Van Duyne, G.D. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96, 7143–7148 (1999).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Hammarström, M., Hellgren, N., van Den Berg, S., Berglund, H. & Härd, T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci. 11, 313–321 (2002).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30

    Peti, W. & Page, R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif. 51, 1–10 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Braun, P. & LaBaer, J. High throughput protein production for functional proteomics. Trends Biotechnol. 21, 383–388 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Vincentelli, R. et al. Medium-scale structural genomics: strategies for protein expression and crystallization. Accounts Chem. Res. 36, 165–172 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Uhlén, M., Forsberg, G., Moks, T., Hartmanis, M. & Nilsson, B. Fusion proteins in biotechnology. Curr. Opin. Biotechnol. 3, 363–369 (1992).

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Arnau, J., Lauritzen, C., Petersen, G.E. & Pedersen, J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif. 48, 1–13 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Carrington, J.C. & Dougherty, W.G. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. USA 85, 3391–3395 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Porath, J. Immobilized metal ion affinity chromatography. Protein Expr. Purif. 3, 263–281 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Nallamsetty, S. & Waugh, D. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr. Purif. 45, 175–182 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Nallamsetty, S. & Waugh, D.S. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat. Protoc. 2, 383–391 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Waugh, D.S. Making the most of affinity tags. Trends Biotechnol. 23, 316–320 (2005).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Carson, M., Johnson, D.H., McDonald, H., Brouillette, C. & Delucas, L.J. His-tag impact on structure. Acta Crystallogr. 63, 295–301 (2007).

    CAS  Google Scholar 

  42. 42

    Dubendorff, J.W. & Studier, F.W. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J. Mol. Biol. 219, 45–59 (1991).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Wycuff, D.R. & Matthews, K.S. Generation of an AraC-araBAD promoter-regulated T7 expression system. Anal. Biochem. 277, 67–73 (2000).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Lesley, S.A. High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 22, 159–164 (2001).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Tunac, J. A new high-aeration capacity shake-flask system. J. Ferm. Bioeng. 68, 15–159 (1989).

    Article  Google Scholar 

  49. 49

    Brodsky, O. & Cronin, C.N. Economical parallel protein expression screening and scale-up in Escherichia coli. J. Struct. Funct. Genomics 7, 101–108 (2006).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Vera, A., Gonzalez-Montalban, N., Aris, A. & Villaverde, A. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol. Bioeng. 96, 1101–1106 (2007).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Berrow, N.S. et al. Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. Acta Crystallogr. D62, 1218–1226 (2006).

    CAS  Google Scholar 

  52. 52

    Page, R. et al. Scalable high-throughput micro-expression device for recombinant proteins. Biotechniques 37, 364–370 (2004).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Bolanos-Garcia, V.M. & Davies, O.R. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim. Biophys. Acta 1760, 1304–1313 (2006).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Howell, J.M., Winstone, T.L., Coorssen, J.R. & Turner, R.J. An evaluation of in vitro protein-protein interaction techniques: assessing contaminating background proteins. Proteomics 6, 2050–2069 (2006).

    PubMed  Article  Google Scholar 

  56. 56

    Bullock, A.N., Debreczeni, J., Amos, A.L., Knapp, S. & Turk, B.E. Structure and substrate specificity of the Pim-1 kinase. J. Biol. Chem. 280, 41675–41682 (2005).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Alam, M., Ho, S., Vance, D.E. & Lehner, R. Heterologous expression, purification, and characterization of human triacylglycerol hydrolase. Protein Expr. Purif. 24, 33–42 (2002).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Kapust, R.B. & Waugh, D.S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z. & Dunker, A.K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573–584 (2002).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Frenkiel-Krispin, D. et al. Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1. J. Biol. Chem. 282, 3458–3464 (2007).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Tolia, N.H. & Joshua-Tor, L. Strategies for protein coexpression in Escherichia coli. Nat. Methods 3, 55–64 (2006).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Romier, C. et al. Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies. Acta Crystallogr. 62, 1232–1242 (2006).

    Google Scholar 

  63. 63

    Bullock, A.N., Debreczeni, J.E., Edwards, A.M., Sundström, M. & Knapp, S. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc. Natl. Acad. Sci. USA 103, 7637–7642 (2006).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Vedadi, M. et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci. USA 103, 15835–15840 (2006).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Elleby, B. et al. High-level production and optimization of monodispersity of 11beta-hydroxysteroid dehydrogenase type 1. Biochim. Biophys. Acta 1700, 199–207 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Strauss, A. et al. Improved expression of kinases in Baculovirus-infected insect cells upon addition of specific kinase inhibitors to the culture helpful for structural studies. Protein Expr. Purif. 56, 167–176 (2007).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Smith, G.E., Summers, M.D. & Fraser, M.J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3, 2156–2165 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Boettner, M., Prinz, B., Holz, C., Stahl, U. & Lang, C. High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J. Biotechnol. 99, 51–62 (2002).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Holz, C., Hesse, O., Bolotina, N., Stahl, U. & Lang, C. A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 25, 372–378 (2002).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D62, 1243–1250 (2006).

    CAS  Google Scholar 

  72. 72

    Yokoyama, S. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7, 39–43 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Kigawa, T. et al. Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J. Struct. Funct. Genomics 5, 63–68 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Matsuda, T. et al. Cell-free synthesis of zinc-binding proteins. J. Struct. Funct. Genomics 7, 93–100 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Endo, Y. & Sawasaki, T. Cell-free expression systems for eukaryotic protein production. Curr. Opin. Biotechnol. 17, 373–380 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Mikami, S., Masutani, M., Sonenberg, N., Yokoyama, S. & Imataka, H. An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr. Purif. 46, 348–357 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Yokoyama, S., Terwilliger, T.C., Kuramitsu, S., Moras, D. & Sussman, J.L. RIKEN aids international structural genomics efforts. Nature 445, 21 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Murayama, K. et al. Crystal structure of the rac activator, Asef, reveals its autoinhibitory mechanism. J. Biol. Chem. 282, 4238–4242 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Miyazono, K. et al. Novel protein fold discovered in the PabI family of restriction enzymes. Nucleic Acids Res. 35, 1908–1918 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Nishihara, K., Kanemori, M., Yanagi, H. & Yura, T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884–889 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Wynn, R.M., Song, J.L. & Chuang, D.T. GroEL/GroES promote dissociation/reassociation cycles of a heterodimeric intermediate during alpha(2)beta(2) protein assembly. Iterative annealing at the quaternary structure level. J. Biol. Chem. 275, 2786–2794 (2000).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Kaiser, C.M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455–460 (2006).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Willis, M.S. et al. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci. 14, 1818–1826 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Vincentelli, R. et al. High-throughput automated refolding screening of inclusion bodies. Protein Sci. 13, 2782–2792 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Kim, S.H. et al. Structural genomics of minimal organisms and protein fold space. J. Struct. Funct. Genomics 6, 63–70 (2005).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Lesley, S.A. & Wilson, I.A. Protein production and crystallization at the joint center for structural genomics. J. Struct. Funct. Genomics 6, 71–79 (2005).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Kreusch, A. & Lesley, S.A. High throughput cloning, expression and purification technologies. in Genomics, Proteomics, and Vaccines (ed.,G. Grandi) 171–184 (Wiley Press, Chichester, UK, 2004).

    Google Scholar 

  88. 88

    McMullan, D. et al. High-throughput protein production for X-ray crystallography and use of size exclusion chromatography to validate or refute computational biological unit predictions. J. Struct. Funct. Genomics 6, 135–141 (2005).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Stols, L., Millard, C.S., Dementieva, I. & Donnelly, M.I. Production of selenomethionine-labeled proteins in two-liter plastic bottles for structure determination. J. Struct. Funct. Genomics 5, 95–102 (2004).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Geerlof, A. et al. The impact of protein characterization in structural proteomics. Acta Crystallogr. D62, 1125–1136 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust. The New York Structural GenomiX Research Center for Structural Genomics is supported by the US National Institute of General Medical Sciences (U54 GM074945). Work at the MDC was supported by the German Federal Ministry for Education and Research (BMBF) through the Leitprojektverbund Proteinstrukturfabrik and the German National Genome Network (NGFN; FKZ 01GR0471, 01GR0472), and by the Fonds der Chemischen Industrie. The Protein Sample Production Facility is funded by the Helmholtz Association of German Research Centres. The China Structural Genomics Consortium is supported by the National 863 Hi-Tech Research and Development Program of China. The Israel Structural Proteomics Center is supported by The Israel Ministry of Science, Culture and Sport, the Divadol Foundation, the Neuman Foundation, the European Commission Sixth Framework Research and Technological Development Programme 'SPINE2-Complexes' Project under contract 031220. The RIKEN Structural Genomics/Proteomics Initiative was supported by the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan. The Joint Center for Structural Genomics is supported by the US National Institutes of Health (NIH) Protein Structure Initiative grant U54 GM074898 from the NIGMS. The Northeast Structural Genomics Consortium is supported by the NIH NIGMS (U54-GM074958). The Midwest Center for Structural Genomics is supported by the NIH (GM074942) and by the US Department of Energy, Office of Biological and Environmental Research (DE-AC02-06CH11357). The Oxford Protein Production Facility is funded by the UK Medical Research Council and Biotechnology and Biological Sciences Research Council. SPINE2-Complexes is funded by the European Commission (contract 031220) under the Framework 6 RTD Programme and is coordinated from the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, UK. The Berkeley Structural Genomics Center is supported by the NIH (GM62412). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIGMS or the NIH.

Author information

Affiliations

Consortia

Corresponding author

Correspondence to Aled Edwards.

Supplementary information

Supplementary Methods, Table and Figures

Supplementary Methods, Supplementary Table 1, Supplementary Figures 1–2 (PDF 539 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Structural Genomics Consortium., Gräslund, S., Nordlund, P. et al. Protein production and purification. Nat Methods 5, 135–146 (2008). https://doi.org/10.1038/nmeth.f.202

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing