Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NAMD goes quantum: an integrative suite for hybrid simulations


Hybrid methods that combine quantum mechanics (QM) and molecular mechanics (MM) can be applied to studies of reaction mechanisms in locations ranging from active sites of small enzymes to multiple sites in large bioenergetic complexes. By combining the widely used molecular dynamics and visualization programs NAMD and VMD with the quantum chemistry packages ORCA and MOPAC, we created an integrated, comprehensive, customizable, and easy-to-use suite ( Through the QwikMD interface, setup, execution, visualization, and analysis are streamlined for all levels of expertise.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Hybrid QM–MM simulations in NAMD.
Figure 2: Hybrid QM–MM VMD features.
Figure 3: Mechanism of glutamyl-tRNA synthetase.


  1. 1

    Senn, H.M. & Thiel, W. Angew. Chem. Int. Edn Engl. 48, 1198–1229 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Field, M.J., Bash, P.A. & Karplus, M. J. Comput. Chem. 11, 700–733 (1990).

    CAS  Article  Google Scholar 

  3. 3

    van der Kamp, M.W. & Mulholland, A.J. Biochemistry 52, 2708–2728 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Bernardi, R.C. & Pascutti, P.G. J. Chem. Theory Comput. 8, 2197–2203 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Retegan, M., Neese, F. & Pantazis, D.A. J. Chem. Theory Comput. 9, 3832–3842 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Coquelle, N. et al. Nat. Chem. 10, 31–37 (2018).

    CAS  Article  Google Scholar 

  7. 7

    Lin, H. & Truhlar, D.G. Theor. Chem. Acc. 117, 185–199 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Jindal, G. & Warshel, A. J. Phys. Chem. B 120, 9913–9921 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Phillips, J.C. et al. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Jiang, W. et al. Comput. Phys. Commun. 185, 908–916 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Humphrey, W., Dalke, A. & Schulten, K. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Ribeiro, J.V. et al. Sci. Rep. 6, 26536 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Fu, H., Shao, X., Chipot, C. & Cai, W. J. Chem. Theory Comput. 12, 3506–3513 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Stewart, J.J. J. Comput. Aided Mol. Des. 4, 1–105 (1990).

    Article  Google Scholar 

  15. 15

    Maia, J.D.C. et al. J. Chem. Theory Comput. 8, 3072–3081 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1327 (2018).

    Article  Google Scholar 

  17. 17

    Götz, A.W., Clark, M.A. & Walker, R.C. J. Comput. Chem. 35, 95–108 (2014).

    Article  Google Scholar 

  18. 18

    Sethi, A., Eargle, J., Black, A.A. & Luthey-Schulten, Z. Proc. Natl. Acad. Sci. USA 106, 6620–6625 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Black Pyrkosz, A., Eargle, J., Sethi, A. & Luthey-Schulten, Z. J. Mol. Biol. 397, 1350–1371 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Pan, A.C., Sezer, D. & Roux, B. J. Phys. Chem. B 112, 3432–3440 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Riplinger, C., Pinski, P., Becker, U., Valeev, E.F. & Neese, F. J. Chem. Phys. 144, 024109 (2016).

    Article  Google Scholar 

  22. 22

    Riccardi, D., Li, G. & Cui, Q. J. Phys. Chem. B 108, 6467–6478 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Warshel, A. & Levitt, M. J. Mol. Biol. 103, 227–249 (1976).

    CAS  Article  Google Scholar 

  24. 24

    Darden, T., York, D. & Pedersen, L. J. Chem. Phys. 98, 10089–10092 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Stewart, J.J.P. J. Comput. Chem. 10, 209–220 (1989).

    CAS  Article  Google Scholar 

  26. 26

    Stewart, J.J.P. J. Comput. Chem. 10, 221–264 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Sure, R. & Grimme, S. J. Comput. Chem. 34, 1672–1685 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Singh, U.C. & Kollman, P.A. J. Comput. Chem. 7, 718–730 (1986).

    CAS  Article  Google Scholar 

  29. 29

    Walker, R.C., Crowley, M.F. & Case, D.A. J. Comput. Chem. 29, 1019–1031 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Lin, H. & Truhlar, D.G. J. Phys. Chem. A 109, 3991–4004 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Sherwood, P. et al. Faraday Discuss. 106, 79–92 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Frisch, M.J. et al. Gaussian 09, Revision A.02. (Gaussian, Inc., 2016).

  33. 33

    Titov, A.V., Ufimtsev, I.S., Luehr, N. & Martinez, T.J. J. Chem. Theory Comput. 9, 213–221 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Shao, Y. et al. Mol. Phys. 113, 184–215 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Kulik, H.J., Zhang, J., Klinman, J.P. & Martínez, T.J. J. Phys. Chem. B 120, 11381–11394 (2016).

    CAS  Article  Google Scholar 

  36. 36

    Sekine, S. et al. EMBO J. 22, 676–688 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Stewart, J.J.P. J. Mol. Model. 19, 1–32 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Best, R.B. et al. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Dutra, J.D.L., Filho, M.A.M., Rocha, G.B., Simas, A.M. & Freire, R.O. PLoS One 10, e0124372 (2015).

    Article  Google Scholar 

  40. 40

    Schoeler, C. et al. Nano Lett. 15, 7370–7376 (2015).

    CAS  Article  Google Scholar 

Download references


The authors thank M.F. Herbst, C. Chipot, and G. Fiorin for helpful discussions. This work was supported by the National Science Foundation (NSF) (grants MCB-1616590, MCB-1244570, and PHY1430124 to Z.L.-S.), the US National Institutes of Health (NIH) (grant P41-GM104601 to Z.L.-S.), the Keck Foundation (grant 206231 to M.C.R.M. and Z.L.-S.), the Alexander von Humboldt Foundation (Feodor Lynen Postdoctoral Fellowship to T.R.), the Brazilian Coordination for Improvement of Higher Educational Personnel (CAPES; fellowship to J.D.C.M.; grant AUXPE1375/2014 to G.B.R.), and the Brazilian National Council for Scientific and Technological Development (CNPq 305271/2013-0 to G.B.R.). F.N. and C.R. acknowledge support for the development of ORCA by the Max Planck society (MPG) and the Germans Science Foundation (DFG). This research made use of Blue Waters sustained-petascale computing, which is supported by the state of Illinois and the NSF (OCI-0725070 and ACI-1238993). This work is part of the Petascale Computational Resource (PRAC) grant, which is supported by the NSF (ACI-1713784).

Author information




M.C.R.M., R.C.B., T.R., K.S., and Z.L.-S. conceived the project. M.C.R.M. implemented the QM–MM interface. R.C.B., T.R., M.C.R.M., G.B.R., and K.S. discussed QM–MM features. J.D.C.M., G.B.R., C.R., and F.N. provided guidance on the development of the QM–MM interface. J.C.P. assisted in adapting NAMD. M.C.R.M. and M.S. prepared Python scripts for the interfaces of selected QM software packages. R.C.B. and M.C.R.M. performed all NAMD tests and simulations. J.D.C.M. and G.B.R. performed Amber calculations. R.C.B. and M.C.R.M. performed all free-energy calculations and analysis. M.S. and J.E.S. implemented the orbital visualization in VMD. J.V.R. and J.E.S. implemented the QM–MM graphical interface in QwikMD. R.C.B., M.C.R.M., T.R., M.S., G.B.R., F.N., and Z.L.-S. wrote and edited the manuscript. K.S. and Z.L.-S. supervised the project.

Corresponding author

Correspondence to Zaida Luthey-Schulten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–6 and Supplementary Note (PDF 16186 kb)

Source Data

Supplementary Figure 1 Source Data (XLSX 32 kb)

Source Data

Supplementary Figure 5 Source Data (XLSX 20788 kb)

Source Data

Supplementary Figure 6 Source Data (XLSX 21893 kb)

Source Data

Supplementary Figure 8 Source Data (XLSX 11057 kb)

Source Data

Supplementary Figure 9 Source Data (XLSX 7780 kb)

Source Data

Supplementary Figure 12 Source Data (XLSX 167 kb)

Source Data

Supplementary Figure 13 Source Data (XLSX 34 kb)

Source Data

Supplementary Figure 14 Source Data (XLSX 40 kb)

Life Sciences Reporting Summary (PDF 131 kb)

QM–MM suite investigates the mechanism that sets up the genetic code

NAMD's QM–MM interface was used to investigate the tRNA synthetase GluRS complex with its cognate tRNA and adenylate. Independent QM regions probed the two ends of an allosteric pathway that connects the anti-codon binding region to the active site, and network analysis was used to define the communication pathway, as well as highly correlated atom communities within the QM regions and across the QM–MM barrier. The reaction was studied with a combination of steered MD, string method and eABF, and the most likely mechanism was rendered using new VMD features, along with atomic orbitals calculated using NAMD/ORCA. (MOV 25928 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melo, M., Bernardi, R., Rudack, T. et al. NAMD goes quantum: an integrative suite for hybrid simulations. Nat Methods 15, 351–354 (2018).

Download citation

Further reading


Quick links