Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding

Abstract

RNA sequencing (RNA-seq) offers a snapshot of cellular RNA populations, but not temporal information about the sequenced RNA. Here we report TimeLapse-seq, which uses oxidative-nucleophilic-aromatic substitution to convert 4-thiouridine into cytidine analogs, yielding apparent U-to-C mutations that mark new transcripts upon sequencing. TimeLapse-seq is a single-molecule approach that is adaptable to many applications and reveals RNA dynamics and induced differential expression concealed in traditional RNA-seq.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TimeLapse-seq uses a convertible nucleoside approach to identify new transcripts in a sequencing experiment.
Figure 2: Global analysis of steady-state and transient RNA dynamics using TimeLapse-seq.
Figure 3: TimeLapse-seq reveals differential transcript isoform stability of the ASXL1 transcript.

Similar content being viewed by others

References

  1. Bhatt, D.M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  Google Scholar 

  2. Menet, J.S., Rodriguez, J., Abruzzi, K.C. & Rosbash, M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).

    Article  Google Scholar 

  3. Wada, Y. et al. A wave of nascent transcription on activated human genes. Proc. Natl. Acad. Sci. USA 106, 18357–18361 (2009).

    Article  CAS  Google Scholar 

  4. Gaidatzis, D., Burger, L., Florescu, M. & Stadler, M.B. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat. Biotechnol. 33, 722–729 (2015).

    Article  CAS  Google Scholar 

  5. Kwak, H., Fuda, N.J., Core, L.J. & Lis, J.T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    Article  CAS  Google Scholar 

  6. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  Google Scholar 

  7. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    Article  CAS  Google Scholar 

  8. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  Google Scholar 

  9. Duffy, E.E. et al. Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell 59, 858–866 (2015).

    Article  CAS  Google Scholar 

  10. Melvin, W.T., Milne, H.B., Slater, A.A., Allen, H.J. & Keir, H.M. Incorporation of 6-thioguanosine and 4-thiouridine into RNA. Application to isolation of newly synthesised RNA by affinity chromatography. Eur. J. Biochem. 92, 373–379 (1978).

    Article  CAS  Google Scholar 

  11. Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).

    Article  CAS  Google Scholar 

  12. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  13. Mishima, Y. & Steitz, J.A. Site-specific crosslinking of 4-thiouridine-modified human tRNA(3Lys) to reverse transcriptase from human immunodeficiency virus type I. EMBO J. 14, 2679–2687 (1995).

    Article  CAS  Google Scholar 

  14. Yano, M. & Hayatsu, H. Permanganate oxidation of 4-thiouracil derivatives. Isolation and properties of I-substituted 2-pyrimidone 4-sulfonates. Biochim. Biophys. Acta 199, 303–315 (1970).

    Article  CAS  Google Scholar 

  15. Ziff, E.B. & Fresco, J.R. A method for locating 4-thiouridylate in the primary structure of transfer ribonucleic acids. Biochemistry 8, 3242–3248 (1969).

    Article  CAS  Google Scholar 

  16. Dai, Q. et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods 14, 695–698 (2017).

    Article  CAS  Google Scholar 

  17. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  18. Mukherjee, N. et al. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat. Struct. Mol. Biol. 24, 86–96 (2017).

    Article  CAS  Google Scholar 

  19. Trinklein, N.D., Murray, J.I., Hartman, S.J., Botstein, D. & Myers, R.M. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell 15, 1254–1261 (2004).

    Article  CAS  Google Scholar 

  20. Mahat, D.B., Salamanca, H.H., Duarte, F.M., Danko, C.G. & Lis, J.T. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol. Cell 62, 63–78 (2016).

    Article  CAS  Google Scholar 

  21. Shalgi, R., Hurt, J.A., Lindquist, S. & Burge, C.B. Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock. Cell Rep. 7, 1362–1370 (2014).

    Article  CAS  Google Scholar 

  22. Russo, J., Heck, A.M., Wilusz, J. & Wilusz, C.J. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120, 39–48 (2017).

    Article  CAS  Google Scholar 

  23. Friedel, C.C., Dölken, L., Ruzsics, Z., Koszinowski, U.H. & Zimmer, R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 37, e115 (2009).

    Article  Google Scholar 

  24. Gelsi-Boyer, V. et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol. 145, 788–800 (2009).

    Article  CAS  Google Scholar 

  25. Scotti, M.M. & Swanson, M.S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  Google Scholar 

  26. Herzog, V.A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    Article  CAS  Google Scholar 

  27. Schofield et al. Protocol in Protocol Exchange DOI https://doi.org/10.1038/protex.2018.004.

  28. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  29. Sexton, A.N., Wang, P.Y., Rutenberg-Schoenberg, M. & Simon, M.D. Interpreting reverse transcriptase termination and mutation events for greater insight into the chemical probing of RNA. Biochemistry 56, 4713–4721 (2017).

    Article  CAS  Google Scholar 

  30. Siegfried, N.A., Busan, S., Rice, G.M., Nelson, J.A. & Weeks, K.M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    Article  CAS  Google Scholar 

  31. Wei, T. & Simko, V.R Package “corrplot”: visualization of a correlation matrix (Version 0.84) (2017).

  32. Xu, H. et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7, e52249 (2012).

    Article  CAS  Google Scholar 

  33. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article  Google Scholar 

  34. Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  Google Scholar 

  35. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  36. Anders, S., Pyl, P.T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

  37. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  38. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  39. Van Herreweghe, E. et al. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J. 26, 3570–3580 (2007).

    Article  CAS  Google Scholar 

  40. Carpenter, B. et al. STAN: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article  Google Scholar 

  41. Thomas, P.D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  Google Scholar 

  42. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank J. Steitz, A. Schepartz, D. Söll, D. Canzio, and the Simon Lab for insightful comments; and we thank Y. Wang and A. Sexton for assistance and scripts used in mutational analysis of targeted sequencing data. This work was supported by the NIH NIGMS T32GM007223 (J.A.S. and E.E.D.); NSF Graduate Research Fellowship (E.E.D.); NIH New Innovator Award DP2 HD083992-01 (M.D.S.), and a Searle scholarship (M.D.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.S. and M.D.S. designed experiments. J.A.S., E.E.D., and L.K. carried out experiments. J.A.S., M.C.S., and M.D.S. performed computational analyses of data. J.A.S. and M.D.S. wrote the manuscript with assistance from all authors.

Corresponding author

Correspondence to Matthew D Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Note 1 (PDF 3157 kb)

Life Sciences Reporting Summary (PDF 159 kb)

Supplementary Protocol

Supplementary Protocol (PDF 433 kb)

Supplementary Table 1

Primers and oligonucleotides used in this study. (XLSX 11 kb)

Supplementary Table 2

Transcript half-lives for individual replicates and combined data for MEF (1h s4 U treatment) and K562 cells (4h s4 U treatment). (XLSX 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schofield, J., Duffy, E., Kiefer, L. et al. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat Methods 15, 221–225 (2018). https://doi.org/10.1038/nmeth.4582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing