Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Systematic characterization of maturation time of fluorescent proteins in living cells


The slow maturation time of fluorescent proteins (FPs) limits the temporal accuracy of measurements of rapid processes such as gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize the maturation kinetics of 50 FPs that span the visible spectrum at two different temperatures in Escherichia coli cells. We identified fast-maturing FPs from this set that yielded the highest signal-to-noise ratio and temporal resolution in individual growing cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maturation kinetics and their impact on fluorescence signal in growing cells.
Figure 2: Impact of maturation time on transcription dynamics.

Similar content being viewed by others


  1. Tsien, R.Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  2. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  3. Shaner, N.C., Patterson, G.H. & Davidson, M.W. J. Cell Sci. 120, 4247–4260 (2007).

    Article  CAS  Google Scholar 

  4. Day, R.N. & Davidson, M.W. Chem. Soc. Rev. 38, 2887–2921 (2009).

    Article  CAS  Google Scholar 

  5. Hebisch, E., Knebel, J., Landsberg, J., Frey, E. & Leisner, M. PLoS One 8, e75991 (2013).

    Article  CAS  Google Scholar 

  6. Megerle, J.A., Fritz, G., Gerland, U., Jung, K. & Rädler, J.O. Biophys. J. 95, 2103–2115 (2008).

    Article  CAS  Google Scholar 

  7. Craggs, T.D. Chem. Soc. Rev. 38, 2865–2875 (2009).

    Article  CAS  Google Scholar 

  8. Moffitt, J.R., Lee, J.B. & Cluzel, P. Lab Chip 12, 1487–1494 (2012).

    Article  CAS  Google Scholar 

  9. Bevis, B.J. & Glick, B.S. Nat. Biotechnol. 20, 83–87 (2002).

    Article  CAS  Google Scholar 

  10. Verkhusha, V.V. et al. J. Biol. Chem. 276, 29621–29624 (2001).

    Article  CAS  Google Scholar 

  11. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  Google Scholar 

  12. Nagai, T. et al. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  13. Rekas, A., Alattia, J.R., Nagai, T., Miyawaki, A. & Ikura, M. J. Biol. Chem. 277, 50573–50578 (2002).

    Article  CAS  Google Scholar 

  14. Cox, R.S. 3rd, Dunlop, M.J. & Elowitz, M.B. J. Biol. Eng. 4, 10 (2010).

    Article  Google Scholar 

  15. Choi, P.J., Cai, L., Frieda, K. & Xie, X.S. Science 322, 442–446 (2008).

    Article  CAS  Google Scholar 

  16. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P. Nat. Biotechnol. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  17. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  18. Kim, H.K. & Kaang, B.K. Brain Res. Bull. 47, 35–41 (1998).

    Article  CAS  Google Scholar 

  19. Wang, S., Moffitt, J.R., Dempsey, G.T., Xie, X.S. & Zhuang, X. Proc. Natl. Acad. Sci. USA 111, 8452–8457 (2014).

    Article  CAS  Google Scholar 

  20. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X.S. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  21. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  22. Davis, J.H., Rubin, A.J. & Sauer, R.T. Nucleic Acids Res. 39, 1131–1141 (2011).

    Article  CAS  Google Scholar 

  23. Yu, D. et al. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  Google Scholar 

  24. Ishida, M. & Oshima, T. J. Biochem. 132, 63–70 (2002).

    Article  CAS  Google Scholar 

  25. Thomson, C.M. & Ward, W.W. Three-phase partitioning (TPP): a rapid and preparative purification tool for GFP. in. Bioluminescence and Chemiluminescence, Progress & Current Applications (eds. Stanley, P.E. & Kricka, L.J.) 115–118 (World Scientific, 2002).

  26. Ward, W. In Protein Purification (Ed. Rizwan Ahmad) Ch. 1 (InTech, 2012).

  27. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  28. Würth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. Nat. Protoc. 8, 1535–1550 (2013).

    Article  Google Scholar 

  29. Oliva, M.A., Bravo-Zanoguera, M. & Price, J.H. Appl. Opt. 38, 638–646 (1999).

    Article  CAS  Google Scholar 

  30. Edelstein, A.D. et al. J. Biol. Methods 1, e10 (2014).

    Article  Google Scholar 

  31. Dunlop, M.J., Cox, R.S. 3rd, Levine, J.H., Murray, R.M. & Elowitz, M.B. Nat. Genet. 40, 1493–1498 (2008).

    Article  CAS  Google Scholar 

Download references


Thanks to A. Mendoza-García for help with spectroscopy, V. Pham for help with SDS-PAGE, P.J. Choi for the tsr-venus sequence, and J. Paulsson for useful comments. This work was partially supported by a fellowship from CONACYT-México and from the PEW Latin American Fellows Program to E.B.; a, NSF GRFP fellowship and Harvard University Ashford Fellowship to J.M.K. This work was supported by NSF 1615487, 1410176, DARPA HR0011-16-2-0049, and NIH 1R21AI094363.

Author information

Authors and Affiliations



E.B. and P.C. conceived the project and analyzed the data. E.B. performed cloning, biochemistry, single-cell experiments and software design for single-cell analysis. J.M.K. assisted with cloning and single-cell experiments. E.B. and J.M.K. designed software for time-lapse microscopy. E.B. and P.C. wrote the manuscript with critical revisions by J.M.K. P.C. supervised the project.

Corresponding author

Correspondence to Philippe Cluzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–26, Supplementary Tables 1 and 2, and Supplementary Note (PDF 10330 kb)

Life Sciences Reporting Summary

Supplementary Protocol

Measurement of maturation kinetics in living Escherichia coli cells

Supplementary Data 1

Mean single-cell fluorescence curves. Mean single-cell fluorescence curves used to calculate maturation times in Table 1.

Supplementary Data 2

Gel densitometry calculations. SDS-PAGE densitometry calculations used to estimate relative FP expression level in E. coli.

Supplementary Data 3

SDS-PAGE images. Gel images used to quantify the relative FP expression level in E. coli.

Supplementary Data 4

Fluorescence signal in growing cells measured using flow cytometry. Fluorescence mean and variance of growing cell cultures measured using flow cytometry.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balleza, E., Kim, J. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat Methods 15, 47–51 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing