Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The trajectory of microbial single-cell sequencing

Abstract

Over the past decade, it has become nearly routine to sequence genomes of individual microbial cells directly isolated from environmental samples ranging from deep-sea hydrothermal vents to insect guts, providing a powerful complement to shotgun metagenomics in microbial community studies. In this review, we address the technical aspects and challenges of single-cell genome sequencing and discuss some of the scientific endeavors that it has enabled. Specifically, we highlight newly added leaves and branches in the genomic tree of bacterial and archaeal life and illustrate the unique and exciting advantages that single-cell genomics offers over metagenomics, both now and in the near future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-cell sequencing and analysis workflow for standard (untargeted) and targeted single-cell sequencing approaches.
Figure 2: Timeline of scientific milestones in single-cell microbial sequencing.
Figure 3: Single-cell sequencing links all DNA-containing elements within a cell and can also reveal tight physical associations between cells.
Figure 4: Bacterial and archaeal SSU-rRNA-gene-based phylogenetic tree.

References

  1. 1

    Venter, J.C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    CAS  PubMed  Google Scholar 

  2. 2

    Tyson, G.W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    CAS  PubMed  Google Scholar 

  3. 3

    Zhang, L. et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA 89, 5847–5851 (1992).

    CAS  PubMed  Google Scholar 

  4. 4

    Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Dean, F.B., Nelson, J.R., Giesler, T.L. & Lasken, R.S. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Zhang, D.Y., Brandwein, M., Hsuih, T. & Li, H.B. Ramification amplification: a novel isothermal DNA amplification method. Mol. Diagn. 6, 141–150 (2001).

    CAS  PubMed  Google Scholar 

  7. 7

    Gawad, C., Koh, W. & Quake, S.R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    CAS  PubMed  Google Scholar 

  8. 8

    Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Zhang, K. et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24, 680–686 (2006).

    CAS  PubMed  Google Scholar 

  10. 10

    Yoon, H.S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011).

    CAS  PubMed  Google Scholar 

  11. 11

    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Eren, A.M. et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3, e1319 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Blainey, P.C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013).

    CAS  PubMed  Google Scholar 

  14. 14

    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. USA 104, 11889–11894 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl. Acad. Sci. USA 109, 7665–7670 (2012).

    CAS  PubMed  Google Scholar 

  16. 16

    Woyke, T. et al. One bacterial cell, one complete genome. PLoS One 5, e10314 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Stepanauskas, R. & Sieracki, M.E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl. Acad. Sci. USA 104, 9052–9057 (2007).

    CAS  PubMed  Google Scholar 

  18. 18

    Marcy, Y. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet. 3, 1702–1708 (2007).

    CAS  PubMed  Google Scholar 

  19. 19

    Osborne, G.W. Recent advances in flow cytometric cell sorting. Methods Cell Biol. 102, 533–556 (2011).

    PubMed  Google Scholar 

  20. 20

    Campbell, J.H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA 110, 5540–5545 (2013).

    CAS  Google Scholar 

  21. 21

    Dodsworth, J.A. et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat. Commun. 4, 1854 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Gole, J. et al. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol. 31, 1126–1132 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Xu, L., Brito, I.L., Alm, E.J. & Blainey, P.C. Virtual microfluidics for digital quantification and single-cell sequencing. Nat. Methods 13, 759–762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Zengler, K. et al. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99, 15681–15686 (2002).

    CAS  PubMed  Google Scholar 

  25. 25

    Dichosa, A.E., Daughton, A.R., Reitenga, K.G., Fitzsimons, M.S. & Han, C.S. Capturing and cultivating single bacterial cells in gel microdroplets to obtain near-complete genomes. Nat. Protoc. 9, 608–621 (2014).

    CAS  PubMed  Google Scholar 

  26. 26

    Fitzsimons, M.S. et al. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome. Genome Res. 23, 878–888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Spencer, S.J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).

    CAS  PubMed  Google Scholar 

  28. 28

    Lan, F., Demaree, B., Ahmed, N. & Abate, A.R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Blanco, L. et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264, 8935–8940 (1989).

    CAS  PubMed  Google Scholar 

  30. 30

    Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS One 4, e5299 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Lasken, R.S. & Stockwell, T.B. Mechanism of chimera formation during the Multiple Displacement Amplification reaction. BMC Biotechnol. 7, 19 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Marshall, I.P., Blainey, P.C., Spormann, A.M. & Quake, S.R. A single-cell genome for Thiovulum sp. Appl. Environ. Microbiol. 78, 8555–8563 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Rodrigue, S. et al. Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 4, e6864 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Chitsaz, H. et al. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat. Biotechnol. 29, 915–921 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Peng, Y., Leung, H.C., Yiu, S.M. & Chin, F.Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    CAS  PubMed  Google Scholar 

  37. 37

    Konstantinidis, K.T. & Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 102, 2567–2572 (2005).

    CAS  PubMed  Google Scholar 

  38. 38

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    CAS  Google Scholar 

  39. 39

    Blainey, P.C., Mosier, A.C., Potanina, A., Francis, C.A. & Quake, S.R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6, e16626 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Clingenpeel, S., Clum, A., Schwientek, P., Rinke, C. & Woyke, T. Reconstructing each cell's genome within complex microbial communities-dream or reality? Front. Microbiol. 5, 771 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. & Tyson, G.W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29, 617–628 (2016).

    CAS  PubMed  Google Scholar 

  43. 43

    Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Chen, M. et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing. PLoS One 9, e114520 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    de Bourcy, C.F. et al. A quantitative comparison of single-cell whole genome amplification methods. PLoS One 9, e105585 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Chen, C. et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356, 189–194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Lynch, M.D. & Neufeld, J.D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

    CAS  PubMed  Google Scholar 

  48. 48

    Eloe-Fadrosh, E.A., Ivanova, N.N., Woyke, T. & Kyrpides, N.C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).

    CAS  Google Scholar 

  49. 49

    Eloe-Fadrosh, E.A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Sipos, R. et al. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol. Ecol. 60, 341–350 (2007).

    CAS  PubMed  Google Scholar 

  51. 51

    Baker, G.C., Smith, J.J. & Cowan, D.A. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55, 541–555 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Youssef, N.H. et al. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'. ISME J. 9, 447–460 (2015).

    CAS  PubMed  Google Scholar 

  53. 53

    Baker, B.J. et al. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314, 1933–1935 (2006).

    CAS  Google Scholar 

  54. 54

    Brown, C.T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

    CAS  Google Scholar 

  55. 55

    Woyke, T. & Rubin, E.M. Evolution. Searching for new branches on the tree of life. Science 346, 698–699 (2014).

    CAS  PubMed  Google Scholar 

  56. 56

    Kim, S. et al. High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat. Commun. 8, 13919 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Podar, M. et al. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73, 3205–3214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Stepanauskas, R. Wiretapping into microbial interactions by single cell genomics. Front. Microbiol. 6, 258 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Paez-Espino, D. et al. Uncovering Earth's virome. Nature 536, 425–430 (2016).

    CAS  PubMed  Google Scholar 

  60. 60

    Abergel, C., Legendre, M. & Claverie, J.M. The rapidly expanding universe of giant viruses: mimivirus, pandoravirus, pithovirus and mollivirus. FEMS Microbiol. Rev. 39, 779–796 (2015).

    CAS  PubMed  Google Scholar 

  61. 61

    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Labonté, J.M. et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Roux, S., Hallam, S.J., Woyke, T. & Sullivan, M.B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    PubMed Central  Google Scholar 

  64. 64

    Munson-McGee, J.H. et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across Yellowstone National Park hot springs. Appl. Environ. Microbiol. 81, 7860–7868 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Huber, H. et al. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).

    CAS  Google Scholar 

  66. 66

    He, X. et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl. Acad. Sci. USA 112, 244–249 (2015).

    CAS  PubMed  Google Scholar 

  67. 67

    Comolli, L.R. & Banfield, J.F. Inter-species interconnections in acid mine drainage microbial communities. Front. Microbiol. 5, 367 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Podar, M. et al. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol. Direct 8, 9 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Sogin, M.L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci. USA 103, 12115–12120 (2006).

    CAS  PubMed  Google Scholar 

  70. 70

    Sharon, I. et al. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res. 25, 534–543 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Delmont, T.O. et al. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front. Microbiol. 6, 358 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Galand, P.E., Casamayor, E.O., Kirchman, D.L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 106, 22427–22432 (2009).

    CAS  PubMed  Google Scholar 

  73. 73

    Martijn, J. et al. Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. ISME J. 9, 2373–2385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Magdanova, L.A. & Goliasnaia, N.V. Heterogeneity as an adaptive trait of the bacterial community. Mikrobiologiia 82, 3–13 (2013).

    CAS  PubMed  Google Scholar 

  75. 75

    Pamp, S.J., Harrington, E.D., Quake, S.R., Relman, D.A. & Blainey, P.C. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res. 22, 1107–1119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Engel, P., Stepanauskas, R. & Moran, N.A. Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet. 10, e1004596 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

    CAS  PubMed  Google Scholar 

  78. 78

    Locey, K.J. & Lennon, J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113, 5970–5975 (2016).

    CAS  PubMed  Google Scholar 

  79. 79

    Schloss, P.D., Girard, R.A., Martin, T., Edwards, J. & Thrash, J.C. Status of the archaeal and bacterial census: an update. MBio 7, e00201–e00216 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Miller, C.S., Baker, B.J., Thomas, B.C., Singer, S.W. & Banfield, J.F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12, R44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Hug, L.A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  Google Scholar 

  83. 83

    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Lasken, R.S. & McLean, J.S. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat. Rev. Genet. 15, 577–584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Siegl, A. et al. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 5, 61–70 (2011).

    PubMed  Google Scholar 

  86. 86

    Wu, D. et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462, 1056–1060 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Wilson, M.C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Lloyd, K.G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).

    CAS  PubMed  Google Scholar 

  89. 89

    Chen, I.A. et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45, D507–D516 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Haroon, M.F. et al. In-solution fluorescence in situ hybridization and fluorescence-activated cell sorting for single cell and population genome recovery. Methods Enzymol. 531, 3–19 (2013).

    CAS  PubMed  Google Scholar 

  91. 91

    Yilmaz, S., Haroon, M.F., Rabkin, B.A., Tyson, G.W. & Hugenholtz, P. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J. 4, 1352–1356 (2010).

    Google Scholar 

  92. 92

    Yamaguchi, T. et al. Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH). Syst. Appl. Microbiol. 38, 400–405 (2015).

    CAS  PubMed  Google Scholar 

  93. 93

    Woyke, T. & Jarett, J. Function-driven single-cell genomics. Microb. Biotechnol. 8, 38–39 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Doud, D.F.R. & Woyke, T. Novel approaches in function-driven single-cell genomics. FEMS Microbiol. Rev. 41, 538–548 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci. USA 112, E194–E203 (2015).

    CAS  PubMed  Google Scholar 

  96. 96

    Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc. Natl. Acad. Sci. USA 113, E4069–E4078 (2016).

    CAS  PubMed  Google Scholar 

  97. 97

    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS One 7, e35314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Reintjes, G., Arnosti, C., Fuchs, B.M. & Amann, R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 11, 1640–1650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    CAS  Google Scholar 

  100. 100

    Dupont, C.L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199 (2012).

    CAS  PubMed  Google Scholar 

  101. 101

    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).

    CAS  PubMed  Google Scholar 

  102. 102

    Clingenpeel, S., Schwientek, P., Hugenholtz, P. & Woyke, T. Effects of sample treatments on genome recovery via single-cell genomics. ISME J. 8, 2546–2549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).

    CAS  PubMed  Google Scholar 

  104. 104

    Wurch, L. et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7, 12115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, under contract no. DE-AC02-05CH11231. T.W. and D.F.R.D. were also supported under the LBNL Microbes to Biomes LDRD entitled “Tackling microbial-mediated plant carbon decomposition using function-driven genomics.”

Author information

Affiliations

Authors

Contributions

T.W., D.F.R.D. and F.S. constructed the figures and wrote the article.

Corresponding author

Correspondence to Tanja Woyke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woyke, T., Doud, D. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat Methods 14, 1045–1054 (2017). https://doi.org/10.1038/nmeth.4469

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing