Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces

Abstract

We describe an atmospheric pressure matrix-assisted laser desorption–ionization mass spectrometry imaging system that uses long-distance laser triangulation on a micrometer scale to simultaneously obtain topographic and molecular information from 3D surfaces. We studied the topographic distribution of compounds on irregular 3D surfaces of plants and parasites, and we imaged nonplanar tissue sections with high lateral resolution, thereby eliminating height-related signal artifacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The autofocusing AP MALDI MSI system and workflow.
Figure 2: Autofocusing 3D surface profiling of plants, trematodes and mouse brain sections.

References

  1. 1

    Yoshimura, Y., Goto-Inoue, N., Moriyama, T. & Zaima, N. Food Chem. 210, 200–211 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Boughton, B.A., Thinagaran, D., Sarabia, D., Bacic, A. & Roessner, U. Phytochem. Rev. 15, 445–488 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Longuespée, R. et al. Prot. Clin. Appl. 10, 701–719 (2016).

    Article  Google Scholar 

  4. 4

    Takáts, Z., Wiseman, J.M., Gologan, B. & Cooks, R.G. Science 306, 471–473 (2004).

    Article  Google Scholar 

  5. 5

    Laiko, V.V., Baldwin, M.A. & Burlingame, A.L. Anal. Chem. 72, 652–657 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Spengler, B., Hubert, M. & Kaufmann, R. In Proceedings of the 42nd Annual Conference on Mass Spectrometry and Allied Topics, 1041 (1994).

  7. 7

    Caprioli, R.M., Farmer, T.B. & Gile, J. Anal. Chem. 69, 4751–4760 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Wiseman, J.M., Ifa, D.R., Song, Q. & Cooks, R.G. Angew. Chem. Int. Ed. 45, 7188–7192 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Spengler, B. Anal. Chem. 87, 64–82 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Kaftan, F. et al. J. Mass Spectrom. 49, 223–232 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Kroiss, J. et al. Nat. Chem. Biol. 6, 261–263 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Zavalin, A. et al. J. Mass Spectrom. 47, 1473–1481 (2012).

    Article  Google Scholar 

  13. 13

    Macdonald, D.A. J. Archaeol. Sci. 48, 26–33 (2014).

    Article  Google Scholar 

  14. 14

    Kim, K.W., Lee, S.-T., Bae, S.-W. & Kim, P.-G. Microsc. Res. Tech. 74, 1166–1173 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Garzón, J., Gharbi, T. & Meneses, J. J. Opt. A, Pure Appl. Opt. 10, 104028 (2008).

    Article  Google Scholar 

  16. 16

    Wray, V., Kunath, A., Schöpke, T. & Hiller, K. Phytochemistry 31, 2555–2557 (1992).

    Article  Google Scholar 

  17. 17

    Kim, M.-J. et al. Phytomedicine 23, 998–1004 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Gounaris, K. & Barber, J. Trends Biochem. Sci. 8, 378–381 (1983).

    CAS  Article  Google Scholar 

  19. 19

    Fenwick, A. Public Health 126, 233–236 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Ràfols, P. et al. Mass Spec. Rev. 2016, 1–26 (2016).

    Google Scholar 

  21. 21

    Guenther, S., Koestler, M., Schulz, O. & Spengler, B. Int. J. Mass Spectrom. 294, 7–15 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Koestler, M. et al. Rapid Commun. Mass Spectrom. 22, 3275–3285 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Kompauer, M., Heiles, S. & Spengler, B. Nat. Methods 14, 90–96 (2017).

    CAS  Article  Google Scholar 

  24. 24

    Kompauer, M., Heiles, S. & Spengler, B. Protocol Exchange https://doi.org/10.1038/protex.2017.103 (2017).

  25. 25

    Paschke, C. et al. J. Am. Soc. Mass Spectrom. 24, 1296–1306 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Smith, C.A. et al. Ther. Drug Monit. 27, 747–751 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) under grant SP314/13-1 and by the State of Hesse through LOEWE Center “DRUID” is gratefully acknowledged. S.H. thanks the Fonds der chemischen Industrie for a Liebig fellowship. The authors are grateful to W. Kummer (Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Germany) and his group members for providing mouse brain samples and to C. Grevelding (Institute for Parasitology, Justus Liebig University Giessen, Germany) for providing Schistosoma mansoni samples.

Author information

Affiliations

Authors

Contributions

B.S. designed and supervised the project; M.K. set up the new instrumentation, performed all experiments, and performed the data analysis; M.K., S.H. and B.S. discussed the findings and wrote the manuscript.

Corresponding author

Correspondence to Bernhard Spengler.

Ethics declarations

Competing interests

B.S. is a consultant of TransMIT GmbH Giessen. The Ph.D. work of M.K. is funded by TransMIT GmbH.

Integrated supplementary information

Supplementary Figure 1 Gray scale MS images and RGB MS image showing single compound distribution and the RGB overlay, respectively.

Gray scale MS image of [saponin +NH4]+ at m/z 814.4961, gray scale MS image of [PE(34:2)+K]+ at m/z 754.4789, gray scale MS image of m/z 336.9247 and the RGB MS image showing the overlay of the three gray scale images. The scale bar is 1 mm.

Supplementary Figure 2 Gray scale MS images showing single compound distributions of compounds presented in Supplementary Table 1.

The scale bar is 1 mm.

Supplementary Figure 3 Average surface mass spectrum of Schistosoma mansoni.

Supplementary Figure 4 MS2 experiments of Schistosoma mansoni lipids.

a) MS2 spectrum of [PC(34:1)+Na]+ b) MS2 spectrum of [PC(36:1)+Na]+.

Supplementary Figure 5 3D optical microscope image of the tilted mouse brain section showing the height variation on the sample.

The scale bar is 1 mm.

Supplementary Figure 6 Total ion current (TIC) MS images of the coronal mouse brain section.

a) TIC image without autofocus and b) TIC image using the autofocus mode. The scale bar is 1 mm.

Supplementary Figure 7 Gray scale MS images and RGB MS images showing single compound distributions and RGB MS overlay, respectively.

a) Gray scale MS image of [MGDG(36:6)+K]+ at m/z 813.4918, gray scale MS image of [trifolin+Na]+ at m/z 471.0905, gray scale MS image of m/z 594.8937 and the RGB MS image showing the overlay of the three gray scale images. b) Gray scale MS image of [PC(36:1)+Na]+ at m/z 810.5982, gray scale MS image of [PC(34:1)+Na]+ at m/z 782.5666, gray scale MS image of m/z 585.0636 and RGB MS image showing the overlay of the three gray scale images. c) Gray scale MS image of [PC(40:7)+K]+ at m/z 870.5410, gray scale MS image of [PI-Cer(d38:0)+H]+ at m/z 838.6159, gray scale MS image of m/z of [SM(d40:2)+K]+ at m/z 823.6084 and the RGB MS image showing the overlay of the three gray scale images. The scale bars are 2 mm in (a), 200 μm in (b) and 1 mm in (c).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Notes 1–2 (PDF 17748 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Protocol

Supplementary Protocol (PDF 1197 kb)

Supplementary Data

METLIN database search results for Bellis perennis metabolites. (XLSX 353 kb)

Supplementary Software

MIRION and MATLAB executable code for MS image analysis. (ZIP 70547 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kompauer, M., Heiles, S. & Spengler, B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat Methods 14, 1156–1158 (2017). https://doi.org/10.1038/nmeth.4433

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing