Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads

Abstract

We present a tool that combines fast mapping, error correction, and de novo assembly (MECAT; accessible at https://github.com/xiaochuanle/MECAT) for processing single-molecule sequencing (SMS) reads. MECAT's computing efficiency is superior to that of current tools, while the results MECAT produces are comparable or improved. MECAT enables reference mapping or de novo assembly of large genomes using SMS reads on a single computer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Principle and property of DDF scoring algorithm in MECAT alignment.

Accession codes

Primary accessions

Sequence Read Archive

References

  1. 1

    Schadt, E.E., Turner, S. & Kasarskis, A. Hum. Mol. Genet. 19, R227–R240 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Eid, J. et al. Science 323, 133–138 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Chin, C.S. et al. Nat. Methods 10, 563–569 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Jain, M. et al. Nat. Methods 12, 351–356 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Sović, I. et al. Nat. Commun. 7, 11307 (2016).

    Article  Google Scholar 

  6. 6

    Loman, N.J., Quick, J. & Simpson, J.T. Nat. Methods 12, 733–735 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Koren, S. et al. Nat. Biotechnol. 30, 693–700 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Seo, J.S. et al. Nature 538, 243–247 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Shi, L. et al. Nat. Commun. 7, 12065 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Gordon, D. et al. Science 352, aae0344 (2016).

    Article  Google Scholar 

  11. 11

    Berlin, K. et al. Nat. Biotechnol. 33, 623–630 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Chin, C.S. et al. Nat. Methods 13, 1050–1054 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Koch, P., Platzer, M. & Downie, B.R. Nucleic Acids Res. 42, e80 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Koren, S., Walenz, B.P., Berlin, K., Miller, J.R. & Phillippy, A.M. Genome Res. 27, 722–736 (2017).

    CAS  Article  Google Scholar 

  15. 15

    Chaisson, M.J. & Tesler, G. BMC Bioinformatics 13, 238 (2012).

  16. 16

    Myers, E.W. Algorithmica 1, 251–266 (1986).

    Article  Google Scholar 

  17. 17

    Myers, G. Algorithms in Bioinformatics, 52–67 (2014).

  18. 18

    Li, H. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  19. 19

    Langmead, B. & Salzberg, S.L. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D.P. Wang for supplying the Chinese human data set. We thank the NCBI assembly group for the Han-1 Chinese annotation. This work was collectively supported by the National Natural Science Foundation of China (31471232, 31471789 and 31600667), the Fundamental Research Funds for the Central Universities (15ykjc23d), the Guangdong Natural Science Foundation (2015A030313127), the Joint Research Fund for the Overseas Natural Science of China (3030901001222), infrastructure support from Center for Precision Medicine (Sun Yat-sen University), China Postdoctoral Science Foundation (2017M612798), and the National Institute of Food and Agriculture (NIFA), USA (2017-70016-26051).

Author information

Affiliations

Authors

Contributions

C.-L.X. conceived and designed this project. Y.C. and C.-L.X. implemented the algorithms. S.-Q.X., C.L.-X., and Y.C. performed the test experiments. K.-N.C., Y.W., and Y.H. coordinated the data release and assisted with executing the pipeline. F.L. provided theoretical analysis of the algorithms. C.-L.X., F.L., Z.X., Y.C., and S.-Q.X. wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Chuan-Le Xiao, Feng Luo or Zhi Xie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Notes 1–11 and Supplementary Tables 1, 2, 3, 5 and 6.

Life Sciences Reporting Summary

Supplementary Table 4

The read coverage of human reference genome alignment by BLASR and MECAT around regions with large structural variants

Supplementary Table 7

Comparison of Read Coverage of Reference Genome Alignment at Large Structural Variants

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, CL., Chen, Y., Xie, SQ. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat Methods 14, 1072–1074 (2017). https://doi.org/10.1038/nmeth.4432

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing