Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genetic interaction mapping in mammalian cells using CRISPR interference


We describe a combinatorial CRISPR interference (CRISPRi) screening platform for mapping genetic interactions in mammalian cells. We targeted 107 chromatin-regulation factors in human cells with pools of either single or double single guide RNAs (sgRNAs) to downregulate individual genes or gene pairs, respectively. Relative enrichment analysis of individual sgRNAs or sgRNA pairs allowed for quantitative characterization of genetic interactions, and comparison with protein–protein-interaction data revealed a functional map of chromatin regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CRISPRi screening platform for studying genetic interactions.
Figure 2: Module map of chromatin-related genes, based on a curated set of the indicated protein complexes.

Similar content being viewed by others


  1. Beltrao, P., Cagney, G. & Krogan, N.J. Cell 141, 739–745 (2010).

    Article  CAS  Google Scholar 

  2. Collins, S.R. et al. Nature 446, 806–810 (2007).

    Article  CAS  Google Scholar 

  3. Kelley, R. & Ideker, T. Nat. Biotechnol. 23, 561–566 (2005).

    Article  CAS  Google Scholar 

  4. Roguev, A. et al. Science 322, 405–410 (2008).

    Article  CAS  Google Scholar 

  5. Costanzo, M. et al. Science 353, aaf1420 (2016).

    Article  Google Scholar 

  6. Fischer, B. et al. eLife 4, e05464 (2015).

    Article  Google Scholar 

  7. Horn, T. et al. Nat. Methods 8, 341–346 (2011).

    Article  CAS  Google Scholar 

  8. Roguev, A. et al. Nat. Methods 10, 432–437 (2013).

    Article  CAS  Google Scholar 

  9. Laufer, C., Fischer, B., Billmann, M., Huber, W. & Boutros, M. Nat. Methods 10, 427–431 (2013).

    Article  CAS  Google Scholar 

  10. Hannon, G.J. Nature 418, 244–251 (2002).

    Article  CAS  Google Scholar 

  11. Morgens, D.W., Deans, R.M., Li, A. & Bassik, M.C. Nat. Biotechnol. 34, 634–636 (2016).

    Article  CAS  Google Scholar 

  12. Gilbert, L.A. et al. Cell 154, 442–451 (2013).

    Article  CAS  Google Scholar 

  13. Hilton, I.B. et al. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  Google Scholar 

  14. Gilbert, L.A. et al. Cell 159, 647–661 (2014).

    Article  CAS  Google Scholar 

  15. Konermann, S. et al. Nature 517, 583–588 (2015).

    Article  CAS  Google Scholar 

  16. Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. Genome Biol. 7, R63 (2006).

    Article  Google Scholar 

  17. Lee, J. et al. Proc. Natl. Acad. Sci. USA 106, 8513–8518 (2009).

    Article  CAS  Google Scholar 

  18. Kim, D.-H., Lee, J., Lee, B. & Lee, J.W. Mol. Endocrinol. 23, 1556–1562 (2009).

    Article  CAS  Google Scholar 

  19. Kittler, R., Heninger, A.-K., Franke, K., Habermann, B. & Buchholz, F. Nat. Methods 2, 779–784 (2005).

    Article  CAS  Google Scholar 

  20. Mandegar, M.A. et al. Cell Stem Cell 18, 541–553 (2016).

    Article  CAS  Google Scholar 

  21. Du, D. & Qi, L.S. Cold Spring Harb. Protoc. 2016 (2016).

  22. Du, D. & Qi, L.S. Cold Spring Harb. Protoc. 2016 (2016).

  23. Liu, H. et al. Bioinformatics 31, 3676–3678 (2015).

    Article  CAS  Google Scholar 

  24. Wilmes, G.M. et al. Mol. Cell 32, 735–746 (2008).

    Article  CAS  Google Scholar 

  25. Fiedler, D. et al. Cell 136, 952–963 (2009).

    Article  CAS  Google Scholar 

  26. Aguilar, P.S. et al. Nat. Struct. Mol. Biol. 17, 901–908 (2010).

    Article  CAS  Google Scholar 

  27. Surma, M.A. et al. Mol. Cell 51, 519–530 (2013).

    Article  CAS  Google Scholar 

Download references


The authors thank the members of the laboratories of L.S.Q. and N.J.K. for advice and helpful discussions, and the Stanford Functional Genomics Facility and UCSD Sequencing Facility for technical support. We thank D. Zhao from the laboratory of L.S.Q. for advice and help in cloning the sgRNA library. L.S.Q. acknowledges support from the NIH Office of the Director (OD), the National Institute of Dental & Craniofacial Research (NIDCR), the Department of Defense Breast Cancer Research Breakthrough Program, the Pew Charitable Trusts and the Alfred P. Sloan Foundation. D.D. and A.R. acknowledge support from the Quantitative Bioscience Institute (QBI). M.C., N.J.K. and L.S.Q. acknowledge support from the J. David Gladstone Biofulcrum Program. This work was supported by DP5 OD017887, NIH R01 DA036858, NIH U01EB021240, DOD W81XWH-17-1-0018, a Pew Scholar Fellowship and an Alfred P. Sloan Fellowship to L.S.Q., as well as by NIH grants P50 GM082250, U19 AI106754, P01 HL089707, R01 GM084279, U19 AI118610 and R01 AI120694 to N.J.K.

Author information

Authors and Affiliations



L.S.Q. and N.J.K. conceived the project. L.S.Q., N.J.K., D.D. and A.R. designed the experiments; L.S.Q. and D.D. designed the sgRNA library; D.D. constructed the sgRNA libraries and performed library screens; D.D. and A.R. performed sample preparation and sequencing; A.R. analyzed the sequencing data, curated the data sets and scored the data; D.D., S.-H.C. and M.C. performed the CRISPRi validation experiments; D.E.G. performed the esiRNA validation experiments; M.S. contributed to analysis and figure generation; J.P.S., T.I. and P.M. provided technical advice; L.S.Q., N.J.K. and A.R. wrote the paper.

Corresponding authors

Correspondence to Lei S Qi or Nevan J Krogan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–8, and Supplementary Notes 1 and 2 (PDF 28438 kb)

Supplementary Data Set 1

Genetic interactions used to build networks on Figure 2a,b (TXT 5 kb)

Supplementary Data Set 2

Single sgRNA screens and rapamycin screen raw data (XLSX 70 kb)

Supplementary Data Set 3

Double sgRNA screens raw data and data used in individual figures (ZIP 9443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Roguev, A., Gordon, D. et al. Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods 14, 577–580 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing