Adaptive optical fluorescence microscopy

Abstract

The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Aberrations deteriorate image quality.
Figure 2: High-resolution image system is more susceptible to aberrations.
Figure 3: Adaptive optics using direct wavefront sensing.
Figure 4: Adaptive optical fluorescence microscopy with indirect wavefront sensing.

References

  1. 1

    Hooke, R. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon (Royal Society, 1665).

  2. 2

    Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Power, R.M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14, 360–373 (2017).

    CAS  Article  Google Scholar 

  4. 4

    Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017).

    CAS  Article  Google Scholar 

  5. 5

    Gibson, S.F. & Lanni, F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A 9, 154–166 (1992).

    CAS  Article  Google Scholar 

  6. 6

    Schwertner, M., Booth, M. & Wilson, T. Characterizing specimen induced aberrations for high NA adaptive optical microscopy. Opt. Express 12, 6540–6552 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Török, P., Hewlett, S.J. & Varga, P. The role of specimen-induced spherical aberration in confocal microscopy. J. Microsc. 188, 158–172 (1997).

    Article  Google Scholar 

  8. 8

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn. (Cambridge University Press, 1999).

  9. 9

    Roorda,, A. in Wavefront Customized Visual Correction: The Quest for SuperVision II (eds. Macrae, S.M. et al.) Ch. 2 (Slack Inc., 2004).

  10. 10

    Hartley, W.G. The light microscope: its use and development (Senecio Publishing Company, 1993).

  11. 11

    Babcock, H.W. Adaptive optics revisited. Science 249, 253–257 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Hardy, J.W. Active optics: a new technology for the control of light. In Proc. IEEE 66, 651–697 (IEEE, 1978).

    Article  Google Scholar 

  13. 13

    Booth, M.J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014).

    Article  Google Scholar 

  14. 14

    Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Liang, J., Williams, D.R. & Miller, D.T. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 2884–2892 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Azucena, O. et al. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons. Opt. Express 18, 17521–17532 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Azucena, O. et al. Adaptive optics wide-field microscopy using direct wavefront sensing. Opt. Lett. 36, 825–827 (2011).

    Article  Google Scholar 

  18. 18

    Jorand, R. et al. Deep and clear optical imaging of thick inhomogeneous samples. PLoS One 7, e35795 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Rueckel, M., Mack-Bucher, J.A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. USA 103, 17137–17142 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Cha, J.W., Ballesta, J. & So, P.T. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J. Biomed. Opt. 15, 046022 (2010).

    Article  Google Scholar 

  21. 21

    Aviles-Espinosa, R. et al. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express 2, 3135–3149 (2011).

    Article  Google Scholar 

  22. 22

    Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Tao, X. et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett. 36, 1062–1064 (2011).

    Article  Google Scholar 

  24. 24

    Tao, X. et al. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars. Opt. Lett. 36, 3389–3391 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Rahman, S.A. & Booth, M.J. Direct wavefront sensing in adaptive optical microscopy using backscattered light. Appl. Opt. 52, 5523–5532 (2013).

    Article  Google Scholar 

  26. 26

    Tao, X. et al. Live imaging using adaptive optics with fluorescent protein guide-stars. Opt. Express 20, 15969–15982 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Ji, N., Milkie, D.E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Liu, R., Milkie, D.E., Kerlin, A., MacLennan, B. & Ji, N. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique. Opt. Express 22, 1619–1628 (2014).

    Article  Google Scholar 

  29. 29

    Ji, N., Sato, T.R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. USA 109, 22–27 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Wang, C. & Ji, N. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Opt. Express 21, 27142–27154 (2013).

    Article  Google Scholar 

  31. 31

    Wang, C. & Ji, N. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy. Opt. Lett. 37, 2001–2003 (2012).

    Article  Google Scholar 

  32. 32

    Scrimgeour, J. & Curtis, J.E. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry. Opt. Express 20, 14534–14541 (2012).

    Article  Google Scholar 

  33. 33

    Daniel, E., Betzig, E. & Ji, N. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination. Opt. Lett. 36, 4206–4208 (2011).

    Article  Google Scholar 

  34. 34

    Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Gonsalves, R.A. Perspectives on phase retrieval and phase diversity in astronomy. In Proc. SPIE Vol. 9148 (eds. Marchetti, E. et al.) 91482P (SPIE, 2014).

  36. 36

    Hanser, B.M., Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Phase retrieval for high-numerical-aperture optical systems. Opt. Lett. 28, 801–803 (2003).

    Article  Google Scholar 

  37. 37

    Hanser, B.M., Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Phase-retrieved pupil functions in wide-field fluorescence microscopy. J. Microsc. 216, 32–48 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Kner, P., Winoto, L., Agard, D.A. & Sedat, J.W. Closed loop adaptive optics for microscopy without a wavefront sensor. In Proc. SPIE Vol. 7570 (eds. Conchello, J.-A. et al.) 7570 06 (SPIE, 2010).

  39. 39

    Kner, P. Phase diversity for three-dimensional imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30, 1980–1987 (2013).

    Article  Google Scholar 

  40. 40

    Albert, O., Sherman, L., Mourou, G., Norris, T.B. & Vdovin, G. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Sherman, L., Ye, J.Y., Albert, O. & Norris, T.B. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206, 65–71 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Marsh, P., Burns, D. & Girkin, J. Practical implementation of adaptive optics in multiphoton microscopy. Opt. Express 11, 1123–1130 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Wright, A.J. et al. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microsc. Res. Tech. 67, 36–44 (2005).

    Article  Google Scholar 

  44. 44

    Izeddin, I. et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 20, 4957–4967 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Skorsetz, M., Artal, P. & Bueno, J.M. Performance evaluation of a sensorless adaptive optics multiphoton microscope. J. Microsc. 261, 249–258 (2016).

    Article  Google Scholar 

  46. 46

    Galwaduge, P.T., Kim, S.H., Grosberg, L.E. & Hillman, E.M.C. Simple wavefront correction framework for two-photon microscopy of in vivo brain. Biomed. Opt. Express 6, 2997–3013 (2015).

    CAS  Article  Google Scholar 

  47. 47

    Booth, M. Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express 14, 1339–1352 (2006).

    Article  Google Scholar 

  48. 48

    Booth, M.J., Neil, M.A.A., Juskaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002).

    CAS  Article  Google Scholar 

  49. 49

    Booth, M.J. Wavefront sensorless adaptive optics for large aberrations. Opt. Lett. 32, 5–7 (2007).

    Article  Google Scholar 

  50. 50

    Débarre, D., Botcherby, E.J., Booth, M.J. & Wilson, T. Adaptive optics for structured illumination microscopy. Opt. Express 16, 9290–9305 (2008).

    Article  Google Scholar 

  51. 51

    Débarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009).

    Article  Google Scholar 

  52. 52

    Bourgenot, C., Saunter, C.D., Taylor, J.M., Girkin, J.M. & Love, G.D. 3D adaptive optics in a light sheet microscope. Opt. Express 20, 13252–13261 (2012).

    Article  Google Scholar 

  53. 53

    Booth, M., Andrade, D., Burke, D., Patton, B. & Zurauskas, M. Aberrations and adaptive optics in super-resolution microscopy. Microscopy (Oxf.) 64, 251–261 (2015).

    CAS  Article  Google Scholar 

  54. 54

    Burke, D., Patton, B., Huang, F., Bewersdorf, J. & Booth, M.J. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2, 177–185 (2015).

    CAS  Article  Google Scholar 

  55. 55

    Huang, F. et al. Ultra-high resolution 3D imaging of whole cells. Cell 166, 1028–1040 (2016).

    CAS  Article  Google Scholar 

  56. 56

    Tehrani, K.F., Xu, J., Zhang, Y., Shen, P. & Kner, P. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt. Express 23, 13677–13692 (2015).

    CAS  Article  Google Scholar 

  57. 57

    McGorty, R., Schnitzbauer, J., Zhang, W. & Huang, B. Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. Opt. Lett. 39, 275–278 (2014).

    CAS  Article  Google Scholar 

  58. 58

    von Diezmann, A., Lee, M.Y., Lew, M.D. & Moerner, W.E. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. Optica 2, 985–993 (2015).

    Article  Google Scholar 

  59. 59

    Arigovindan, M., Sedat, J.W. & Agard, D.A. Effect of depth dependent spherical aberrations in 3D structured illumination microscopy. Opt. Express 20, 6527–6541 (2012).

    Article  Google Scholar 

  60. 60

    Thomas, B., Wolstenholme, A., Chaudhari, S.N., Kipreos, E.T. & Kner, P. Enhanced resolution through thick tissue with structured illumination and adaptive optics. J. Biomed. Opt. 20, 26006 (2015).

    Article  Google Scholar 

  61. 61

    Auksorius, E. et al. Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt. Lett. 33, 113–115 (2008).

    Article  Google Scholar 

  62. 62

    Lenz, M.O. et al. 3-D stimulated emission depletion microscopy with programmable aberration correction. J. Biophotonics 7, 29–36 (2014).

    CAS  Article  Google Scholar 

  63. 63

    Gould, T.J., Burke, D., Bewersdorf, J. & Booth, M.J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012).

    Article  Google Scholar 

  64. 64

    Mosk, A.P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).

    CAS  Article  Google Scholar 

  65. 65

    Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).

    CAS  Article  Google Scholar 

  66. 66

    Vellekoop, I.M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

    CAS  Article  Google Scholar 

  67. 67

    Sinefeld, D., Paudel, H.P., Ouzounov, D.G., Bifano, T.G. & Xu, C. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence. Opt. Express 23, 31472–31483 (2015).

    Article  Google Scholar 

  68. 68

    Jesacher, A. et al. Adaptive harmonic generation microscopy of mammalian embryos. Opt. Lett. 34, 3154–3156 (2009).

    Article  Google Scholar 

  69. 69

    Sun, W., Tan, Z., Mensh, B.D. & Ji, N. xThalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author thanks A. Roorda and R. Turcotte for providing data in Figure 2. This work is supported by Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Na Ji.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, N. Adaptive optical fluorescence microscopy. Nat Methods 14, 374–380 (2017). https://doi.org/10.1038/nmeth.4218

Download citation

Further reading