Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterizing cell subsets using marker enrichment modeling

This article has been updated


Learning cell identity from high-content single-cell data presently relies on human experts. We present marker enrichment modeling (MEM), an algorithm that objectively describes cells by quantifying contextual feature enrichment and reporting a human- and machine-readable text label. MEM outperforms traditional metrics in describing immune and cancer cell subsets from fluorescence and mass cytometry. MEM provides a quantitative language to communicate characteristics of new and established cytotypes observed in complex tissues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Marker enrichment modeling (MEM) automatically labels human blood cell populations in data set A.
Figure 2: Hierarchical clustering based solely on MEM label groups of T cells and B cells measured in diverse studies using different cytometry platforms.
Figure 3: MEM correctly grouped immune and cancer cell populations from glioma tumors using nine proteins expressed on cancer cells in data set D.

Change history

  • 10 February 2017

    In the version of this article initially published online, Jonathan M Irish was misspelled as Jonathon M Irish. The error has been corrected in the print, PDF and HTML versions of this article as of 10 Feburary 2017.


  1. Diggins, K.E., Ferrell, P.B. Jr. & Irish, J.M. Methods 82, 55–63 (2015).

    Article  CAS  Google Scholar 

  2. Saeys, Y., Gassen, S.V. & Lambrecht, B.N. Nat. Rev. Immunol. 16, 449–462 (2016).

    Article  CAS  Google Scholar 

  3. Patel, A.P. et al. Science 344, 1396–1401 (2014).

    Article  CAS  Google Scholar 

  4. Becher, B. et al. Nat. Immunol. 15, 1181–1189 (2014).

    Article  CAS  Google Scholar 

  5. Greenplate, A.R., Johnson, D.B., Ferrell, P.B. Jr. & Irish, J.M. Eur. J. Cancer 61, 77–84 (2016).

    Article  CAS  Google Scholar 

  6. Irish, J.M. et al. Cell 118, 217–228 (2004).

    Article  CAS  Google Scholar 

  7. Irish, J.M. et al. Proc. Natl. Acad. Sci. USA 107, 12747–12754 (2010).

    Article  CAS  Google Scholar 

  8. Levine, J.H. et al. Cell 162, 184–197 (2015).

    Article  CAS  Google Scholar 

  9. Greenplate, A.R. et al. Cancer Immunol. Res. 4, 474–480 (2016).

    Article  CAS  Google Scholar 

  10. Gaudillière, B. et al. Sci. Transl. Med. 6, 255ra131 (2014).

    Article  Google Scholar 

  11. Young, I.T. J. Histochem. Cytochem. 25, 935–941 (1977).

    Article  CAS  Google Scholar 

  12. Kim, D., Donnenberg, V.S., Wilson, J.W. & Donnenberg, A.D. Cytometry A 89, 89–97 (2016).

    Article  CAS  Google Scholar 

  13. Orlova, D.Y. et al. PLoS One 11, e0151859 (2016).

    Article  Google Scholar 

  14. Leelatian, N., Diggins, K.E. & Irish, J.M. Methods Mol. Biol. 1346, 99–113 (2015).

    Article  CAS  Google Scholar 

  15. Bendall, S.C. et al. Science 332, 687–696 (2011).

    Article  CAS  Google Scholar 

  16. Leelatian, N. et al. Cytometry B Clin. Cytom. (2016).

  17. el-AD, Amir et al. Nat. Biotechnol. 31, 545–552 (2013).

    Article  Google Scholar 

  18. Qiu, P. et al. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  Google Scholar 

  19. Irish, J.M. Nat. Immunol. 15, 1095–1097 (2014).

    Article  CAS  Google Scholar 

  20. IUIS-WHO Nomenclature Subcommittee. Bull. World Health Organ. 62, 809–815 (1984).

  21. Kotecha, N., Krutzik, P.O. & Irish, J.M. In Current Protocols in Cytom. 53, 10.17.1–10.17.24 (2010).

    Article  Google Scholar 

  22. Hahne, F. et al. BMC Bioinformatics 10, 106 (2009).

    Article  Google Scholar 

  23. Warnes, G.R. et al. gplots: Various R Programming Tools for Plotting Data. (2016).

  24. Lo, K. BMC Bioinformatics 10, 145 (2009).

    Article  Google Scholar 

  25. Mosmann, T.R. et al. Cytometry A 85, 422–433 (2014).

    Article  Google Scholar 

  26. Bruggner, R.V., Bodenmiller, B., Dill, D.L., Tibshirani, R.J. & Nolan, G.P. Proc. Natl. Acad. Sci. USA 111, E2770–E2777 (2014).

    Article  CAS  Google Scholar 

  27. Shekhar, K., Brodin, P., Davis, M.M. & Chakraborty, A.K. Proc. Natl. Acad. Sci. USA 111, 202–207 (2014).

    Article  CAS  Google Scholar 

  28. Bendall, S.C. et al. Cell 157, 714–725 (2014).

    Article  CAS  Google Scholar 

  29. Spitzer, M.H. et al. Science 349, 1259425 (2015).

    Article  Google Scholar 

  30. Chattopadhyay, P.K., Gierahn, T.M., Roederer, M. & Love, J.C. Nat. Immunol. 15, 128–135 (2014).

    Article  CAS  Google Scholar 

  31. Ferrell, N.B. Jr. et al. PLoS One 11, e0153207 (2016).

    Article  Google Scholar 

  32. Nicholas, K.J. et al. Cytometry A 89, 271–280 (2016).

    Article  CAS  Google Scholar 

  33. Polikowsky, H.G., Wogsland, C.E., Diggins, K.E., Huse, K. & Irish, J.M. J. Immunol. 195, 1364–1367 (2015).

    Article  CAS  Google Scholar 

  34. Leelatian, N., Diggins, K.E. & Irish, J.M. in Methods Mol. Biol. 1346, 99–113 (2015).

    Article  CAS  Google Scholar 

  35. Cox, C., Reeder, J.E., Robinson, R.D., Suppes, S.B. & Wheeless, L.L. Cytometry 9, 291–298 (1988).

    Article  CAS  Google Scholar 

  36. Civin, C.I. et al. J. Immunol. 133, 157–165 (1984).

    CAS  PubMed  Google Scholar 

  37. Doulatov, S., Notta, F., Laurenti, E. & Dick, J.E. Cell Stem Cell 10, 120–136 (2012).

    Article  CAS  Google Scholar 

  38. Basit, A. et al. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L200–L207 (2006).

    Article  CAS  Google Scholar 

  39. Furze, R.C. & Rankin, S.M. Immunology 125, 281–288 (2008).

    Article  CAS  Google Scholar 

Download references


This study was supported by R25 CA136440-04 (K.E.D.), F31 CA199993 (A.R.G.), R00 CA143231-03 (J.M.I.), the Vanderbilt-Ingram Cancer Center (VICC, P30 CA68485), VICC Ambassadors, a VICC Hematology Helping Hands award (J.M.I. and K.E.D.), and the Vanderbilt International Scholars Program (N.L.). Thanks to M. Roussel for helpful discussions of myeloid cell identity markers, to D. Doxie for helpful discussions of MEM analysis of tumor and immune cell subsets, and to L. Chambless and R. Ihrie for use of glioma tumor data generated by N.L.

Author information

Authors and Affiliations



All authors designed experiments, discussed data visualization, contributed intellectually to the manuscript, and approved the final manuscript. J.M.I. and K.E.D. performed computational analyses, developed analytical tools and protocols, conceived and designed the study, and wrote the manuscript. A.R.G. contributed to Figures 2 and 3 and assisted with manuscript revisions. N.L. contributed to Figure 3 and manuscript revisions. C.E.W. contributed to R code implementation and manuscript revisions.

Corresponding author

Correspondence to Jonathan M Irish.

Ethics declarations

Competing interests

J.M.I. is cofounder and board member and Cytobank Inc. and received research support from Incyte Corp.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–5 and Supplementary Notes 1–5 (PDF 3915 kb)

Source data to Supplementary Figure 2

Source data to Supplementary Figure 4

Source data to Supplementary Figure 5

Supplementary Data 1

Supplementary Note 2 Underlying Data (XLSX 28 kb)

Supplementary Data 2

Supplementary Note 5-Figure 1 Underlying Data (XLSX 18 kb)

Supplementary Data 3

Supplementary Note 5-Figure 2 Underlying Data (XLSX 13 kb)

Supplementary Software

R package for MEM implementation (ZIP 4346 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diggins, K., Greenplate, A., Leelatian, N. et al. Characterizing cell subsets using marker enrichment modeling. Nat Methods 14, 275–278 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing