Abstract
We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy
Scientific Reports Open Access 21 November 2022
-
Approach to map nanotopography of cell surface receptors
Communications Biology Open Access 09 March 2022
-
Accurate localization microscopy by intrinsic aberration calibration
Nature Communications Open Access 24 June 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Betzig, E. et al. Science 313, 1642–1645 (2006).
van de Linde, S. et al. Nat. Protoc. 6, 991–1009 (2011).
Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810–813 (2008).
Ram, S., Prabhat, P., Chao, J., Ward, E.S. & Ober, R.J. Biophys. J. 95, 6025–6043 (2008).
Juette, M.F. et al. Nat. Methods 5, 527–529 (2008).
Pavani, S.R. et al. Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
Shtengel, G. et al. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
Xu, K., Babcock, H.P. & Zhuang, X. Nat. Methods 9, 185–188 (2012).
Bourg, N. et al. Nat. Photonics 9, 587–593 (2015).
Deschamps, J., Mund, M. & Ries, J. Opt. Express 22, 29081–29091 (2014).
Howell, S.B. Publ. Astron. Soc. Pac. 101, 616–622 (1989).
Holden, S.J. et al. Biophys. J. 99, 3102–3111 (2010).
Wolter, S. et al. Nat. Methods 9, 1040–1041 (2012).
Gibson, S.F. & Lanni, F. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 9, 154–166 (1992).
Schücker, K., Holm, T., Franke, C., Sauer, M. & Benavente, R. Proc. Natl. Acad. Sci. USA 112, 2029–2033 (2015).
Ehmann, N. et al. Nat. Commun. 5, 4650 (2014).
Grimm, J.B. et al. Angew. Chem. Int. Edn Engl. 55, 1723–1727 (2016).
Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Nat. Methods 5, 1047–1052 (2008).
Heilemann, M., Kasper, R., Tinnefeld, P. & Sauer, M. J. Am. Chem. Soc. 128, 16864–16875 (2006).
Löschberger, A. et al. J. Cell Sci. 125, 570–575 (2012).
Schäfer, P., van de Linde, S., Lehmann, J., Sauer, M. & Doose, S. Anal. Chem. 85, 3393–3400 (2013).
Mehlitz, A. et al. Cell. Microbiol. 16, 1224–1243 (2014).
Ober, R.J., Ram, S. & Ward, E.S. Biophys. J. 86, 1185–1200 (2004).
Small, A. & Stahlheber, S. Nat. Methods 11, 267–279 (2014).
Parthasarathy, R. Nat. Methods 9, 724–726 (2012).
Kirshner, H., Aguet, F., Sage, D. & Unser, M. J. Microsc. 249, 13–25 (2013).
Sage, D. et al. Nat. Methods 12, 717–724 (2015).
Ovesný, M., Křížek, P., Borkovec, J., Svindrych, Z. & Hagen, G.M. Bioinformatics 30, 2389–2390 (2014).
Herbert, A. GDSC SMLM ImageJ Plugins http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/smlm_plugins (2015).
Badieirostami, M., Lew, M.D., Thompson, M.A. & Moerner, W.E. Appl. Phys. Lett. 97, 161103 (2010).
Böhmer, M. & Enderlein, J. J. Opt. Soc. Am. B 20, 554–559 (2003).
Patra, D., Gregor, I. & Enderlein, J. J. Phys. Chem. A 108, 6836–6841 (2004).
Acknowledgements
We thank J. Enderlein (University of Göttingen) for providing us with software for the refractive index mismatch correction and D. Birch for critically reading the manuscript. We are very grateful to T. Klein, as well as to K. Schücker, R. Benavente (University of Würzburg) and L. Lavis (Janelia Research Campus) for the provision of raw data and to L. Pließ for support with cell culture.
Author information
Authors and Affiliations
Contributions
C.F. and S.v.d.L. designed the TRABI algorithm, developed software, performed experiments and evaluated the data. C.F., M.S. and S.v.d.L. discussed results and commented on the manuscript. S.v.d.L. conceived the project and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
C.F., M.S. and S.v.d.L. are in the process of filing a patent application.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–19 and Supplementary Notes 1 and 2. (PDF 5981 kb)
Supplementary Software
TRABI 1.0 Software. (ZIP 161 kb)
Source data
Source data tables for Supplementary Figures 1, 3, 4 and 10 (ZIP 32 kb)
Virtual 3D imaging of synaptonemal complex
Rendered virtual 3D structure of synaptonemal complex of the inset shown in Fig. 2b (ii). Left: x-y projection color-coded in P(z); right: 360° rotational view, scale bar 500 nm. (MOV 1350 kb)
Virtual 3D imaging of active zone protein Bruchpilot in Drosophila
Rendered virtual 3D structure of the presynaptic protein Bruchpilot in Drosophila neuromuscular junction of a detail shown in Fig. 2c. Left: x-y projection color-coded in P(z); right: 360° rotational view, scale bar 200 nm. (MOV 906 kb)
Virtual 3D imaging of F-Actin in COS-7 cells
Virtual 3D image stack of the data shown in Fig. 2d and Supplementary Fig. 15. P(z) interval in 5% steps. (MOV 4415 kb)
3D imaging of microtubules in U2OS cells
Rendered 3D microtubule structure of the inset shown in Fig. 3c. Left: x-y projection, right: 3D TRABI 360° rotational view, x-y-z scale 20 nm/px, Scale bar 250 nm. (MOV 729 kb)
3D imaging of microtubules in U2OS cells
Rendered 3D microtubule structure of the inset shown in Fig. 3d. Left: x-y projection, right: 3D TRABI 360° rotational view, x-y-z scale 20 nm/px, Scale bar 250 nm. (MOV 479 kb)
Source data
Rights and permissions
About this article
Cite this article
Franke, C., Sauer, M. & van de Linde, S. Photometry unlocks 3D information from 2D localization microscopy data. Nat Methods 14, 41–44 (2017). https://doi.org/10.1038/nmeth.4073
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.4073
This article is cited by
-
Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy
Scientific Reports (2022)
-
Approach to map nanotopography of cell surface receptors
Communications Biology (2022)
-
Accurate localization microscopy by intrinsic aberration calibration
Nature Communications (2021)
-
Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules
Nature Communications (2021)
-
Information-rich localization microscopy through machine learning
Nature Communications (2019)