Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

CHARMM36m: an improved force field for folded and intrinsically disordered proteins

Abstract

The all-atom additive CHARMM36 protein force field is widely used in molecular modeling and simulations. We present its refinement, CHARMM36m (http://mackerell.umaryland.edu/charmm_ff.shtml), with improved accuracy in generating polypeptide backbone conformational ensembles for intrinsically disordered peptides and proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAXS profiles of the RS peptide.

Similar content being viewed by others

References

  1. Wright, P.E. & Dyson, H.J. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).

    Article  CAS  Google Scholar 

  2. Brucale, M., Schuler, B. & Samorì, B. Chem. Rev. 114, 3281–3317 (2014).

    Article  CAS  Google Scholar 

  3. Mackerell, A.D. Jr. J. Comput. Chem. 25, 1584–1604 (2004).

    Article  CAS  Google Scholar 

  4. Rauscher, S. et al. J. Chem. Theory Comput. 11, 5513–5524 (2015).

    Article  CAS  Google Scholar 

  5. Best, R.B., Zheng, W. & Mittal, J. J. Chem. Theory Comput. 10, 5113–5124 (2014).

    Article  CAS  Google Scholar 

  6. Piana, S., Donchev, A.G., Robustelli, P. & Shaw, D.E. J. Phys. Chem. B 119, 5113–5123 (2015).

    Article  CAS  Google Scholar 

  7. Best, R.B. et al. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  CAS  Google Scholar 

  8. MacKerell, A.D. Jr., Feig, M. & Brooks, C.L. III. J. Am. Chem. Soc. 126, 698–699 (2004).

    Article  CAS  Google Scholar 

  9. Fitzkee, N.C., Fleming, P.J. & Rose, G.D. Proteins 58, 852–854 (2005).

    Article  CAS  Google Scholar 

  10. Fesinmeyer, R.M., Hudson, F.M. & Andersen, N.H. J. Am. Chem. Soc. 126, 7238–7243 (2004).

    Article  CAS  Google Scholar 

  11. Fluitt, A.M. & de Pablo, J.J. Biophys. J. 109, 1009–1018 (2015).

    Article  CAS  Google Scholar 

  12. Walters, R.H. & Murphy, R.M. J. Mol. Biol. 393, 978–992 (2009).

    Article  CAS  Google Scholar 

  13. Lapidus, L.J., Eaton, W.A. & Hofrichter, J. Proc. Natl. Acad. Sci. USA 97, 7220–7225 (2000).

    Article  CAS  Google Scholar 

  14. Buscaglia, M., Lapidus, L.J., Eaton, W.A. & Hofrichter, J. Biophys. J. 91, 276–288 (2006).

    Article  CAS  Google Scholar 

  15. Lovell, S.C. et al. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  16. Meng, W., Shan, B., Tang, Y. & Raleigh, D.P. Protein Sci. 18, 1692–1701 (2009).

    Article  CAS  Google Scholar 

  17. Baltzis, A.S. & Glykos, N.M. Protein Sci. 25, 587–596 (2016).

    Article  CAS  Google Scholar 

  18. Jensen, M.R. & Blackledge, M. Proc. Natl. Acad. Sci. USA 111, E1557–E1558 (2014).

    Article  CAS  Google Scholar 

  19. Müller-Späth, S. et al. Proc. Natl. Acad. Sci. USA 107, 14609–14614 (2010).

    Article  Google Scholar 

  20. Chen, P.C. & Hub, J.S. Biophys. J. 107, 435–447 (2014).

    Article  CAS  Google Scholar 

  21. Vorobyov, I.V., Anisimov, V.M. & MacKerell, A.D. Jr. J. Phys. Chem. B 109, 18988–18999 (2005).

    Article  CAS  Google Scholar 

  22. Mukrasch, M.D. et al. J. Am. Chem. Soc. 129, 5235–5243 (2007).

    Article  CAS  Google Scholar 

  23. Mantsyzov, A.B. et al. Protein Sci. 23, 1275–1290 (2014).

    Article  CAS  Google Scholar 

  24. Gibson, K.D. & Scheraga, H.A. Proc. Natl. Acad. Sci. USA 83, 5649–5653 (1986).

    Article  CAS  Google Scholar 

  25. Brooks, B.R., Pastor, R.W. & Carson, F.W. Proc. Natl. Acad. Sci. USA 84, 4470–4474 (1987).

    Article  CAS  Google Scholar 

  26. Roterman, I.K., Gibson, K.D. & Scheraga, H.A. J. Biomol. Struct. Dyn. 7, 391–419 (1989).

    Article  CAS  Google Scholar 

  27. Li, D.-W. & Brüschweiler, R. Angew. Chem. Int. Ed. Engl. 49, 6778–6780 (2010).

    Article  CAS  Google Scholar 

  28. Di Pierro, M. & Elber, R. J. Chem. Theory Comput. 9, 3311–3320 (2013).

    Article  CAS  Google Scholar 

  29. Wang, L.-P. et al. J. Phys. Chem. B 117, 9956–9972 (2013).

    Article  CAS  Google Scholar 

  30. Piana, S., Lindorff-Larsen, K. & Shaw, D.E. Biophys. J. 100, L47–L49 (2011).

    Article  CAS  Google Scholar 

  31. Debiec, K.T., Gronenborn, A.M. & Chong, L.T. J. Phys. Chem. B 118, 6561–6569 (2014).

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. J. Chem. Phys. 79, 926–926 (1983).

    Article  CAS  Google Scholar 

  33. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  Google Scholar 

  34. Brooks, B.R. et al. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  Google Scholar 

  35. Eastman, P. et al. J. Chem. Theory Comput. 9, 461–469 (2013).

    Article  CAS  Google Scholar 

  36. Huang, J. & MacKerell, A.D. Jr. J. Comput. Chem. 34, 2135–2145 (2013).

    Article  CAS  Google Scholar 

  37. Boonstra, S., Onck, P.R. & van der Giessen, E. J. Phys. Chem. B 120, 3692–3698 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the NIH (GM072558 to A.D.M.) and (GM084953 to M.F.) and computational support from the University of Maryland Computer-Aided Drug Design Center, XSEDE (TG-MCA98N017 to A.D.M.) and (TG-MCB090003 to M.F.) and the SuperMUC supercomputer at the Leibniz Rechenzentrum in Garching provided through an allocation by the Gauss Supercomputing Center to S.R. and H.G. are acknowledged. We thank V. Gapsys for helpful discussions. S.R. is supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.H. performed the force field optimization. J.H., S.R., G.N. and M.F. ran simulations. J.H., S.R., G.N., T.R. and M.F. analyzed data. J.H., S.R., M.F., B.L.d.G., H.G. and A.D.M. wrote the manuscript. A.D.M. conceived and initiated the research.

Corresponding author

Correspondence to Alexander D MacKerell Jr.

Ethics declarations

Competing interests

A.D.M. is cofounder and CSO of SilcsBio LLC.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1–18 and Supplementary Note. (PDF 4271 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Rauscher, S., Nawrocki, G. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71–73 (2017). https://doi.org/10.1038/nmeth.4067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing