Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CHARMM36m: an improved force field for folded and intrinsically disordered proteins

Abstract

The all-atom additive CHARMM36 protein force field is widely used in molecular modeling and simulations. We present its refinement, CHARMM36m (http://mackerell.umaryland.edu/charmm_ff.shtml), with improved accuracy in generating polypeptide backbone conformational ensembles for intrinsically disordered peptides and proteins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SAXS profiles of the RS peptide.

References

  1. 1

    Wright, P.E. & Dyson, H.J. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Brucale, M., Schuler, B. & Samorì, B. Chem. Rev. 114, 3281–3317 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Mackerell, A.D. Jr. J. Comput. Chem. 25, 1584–1604 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Rauscher, S. et al. J. Chem. Theory Comput. 11, 5513–5524 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Best, R.B., Zheng, W. & Mittal, J. J. Chem. Theory Comput. 10, 5113–5124 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Piana, S., Donchev, A.G., Robustelli, P. & Shaw, D.E. J. Phys. Chem. B 119, 5113–5123 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Best, R.B. et al. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    CAS  Article  Google Scholar 

  8. 8

    MacKerell, A.D. Jr., Feig, M. & Brooks, C.L. III. J. Am. Chem. Soc. 126, 698–699 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Fitzkee, N.C., Fleming, P.J. & Rose, G.D. Proteins 58, 852–854 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Fesinmeyer, R.M., Hudson, F.M. & Andersen, N.H. J. Am. Chem. Soc. 126, 7238–7243 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Fluitt, A.M. & de Pablo, J.J. Biophys. J. 109, 1009–1018 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Walters, R.H. & Murphy, R.M. J. Mol. Biol. 393, 978–992 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Lapidus, L.J., Eaton, W.A. & Hofrichter, J. Proc. Natl. Acad. Sci. USA 97, 7220–7225 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Buscaglia, M., Lapidus, L.J., Eaton, W.A. & Hofrichter, J. Biophys. J. 91, 276–288 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Lovell, S.C. et al. Proteins 50, 437–450 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Meng, W., Shan, B., Tang, Y. & Raleigh, D.P. Protein Sci. 18, 1692–1701 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Baltzis, A.S. & Glykos, N.M. Protein Sci. 25, 587–596 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Jensen, M.R. & Blackledge, M. Proc. Natl. Acad. Sci. USA 111, E1557–E1558 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Müller-Späth, S. et al. Proc. Natl. Acad. Sci. USA 107, 14609–14614 (2010).

    Article  Google Scholar 

  20. 20

    Chen, P.C. & Hub, J.S. Biophys. J. 107, 435–447 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Vorobyov, I.V., Anisimov, V.M. & MacKerell, A.D. Jr. J. Phys. Chem. B 109, 18988–18999 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Mukrasch, M.D. et al. J. Am. Chem. Soc. 129, 5235–5243 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Mantsyzov, A.B. et al. Protein Sci. 23, 1275–1290 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Gibson, K.D. & Scheraga, H.A. Proc. Natl. Acad. Sci. USA 83, 5649–5653 (1986).

    CAS  Article  Google Scholar 

  25. 25

    Brooks, B.R., Pastor, R.W. & Carson, F.W. Proc. Natl. Acad. Sci. USA 84, 4470–4474 (1987).

    CAS  Article  Google Scholar 

  26. 26

    Roterman, I.K., Gibson, K.D. & Scheraga, H.A. J. Biomol. Struct. Dyn. 7, 391–419 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Li, D.-W. & Brüschweiler, R. Angew. Chem. Int. Ed. Engl. 49, 6778–6780 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Di Pierro, M. & Elber, R. J. Chem. Theory Comput. 9, 3311–3320 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Wang, L.-P. et al. J. Phys. Chem. B 117, 9956–9972 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Piana, S., Lindorff-Larsen, K. & Shaw, D.E. Biophys. J. 100, L47–L49 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Debiec, K.T., Gronenborn, A.M. & Chong, L.T. J. Phys. Chem. B 118, 6561–6569 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. J. Chem. Phys. 79, 926–926 (1983).

    CAS  Article  Google Scholar 

  33. 33

    Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Brooks, B.R. et al. J. Comput. Chem. 30, 1545–1614 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Eastman, P. et al. J. Chem. Theory Comput. 9, 461–469 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Huang, J. & MacKerell, A.D. Jr. J. Comput. Chem. 34, 2135–2145 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Boonstra, S., Onck, P.R. & van der Giessen, E. J. Phys. Chem. B 120, 3692–3698 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support from the NIH (GM072558 to A.D.M.) and (GM084953 to M.F.) and computational support from the University of Maryland Computer-Aided Drug Design Center, XSEDE (TG-MCA98N017 to A.D.M.) and (TG-MCB090003 to M.F.) and the SuperMUC supercomputer at the Leibniz Rechenzentrum in Garching provided through an allocation by the Gauss Supercomputing Center to S.R. and H.G. are acknowledged. We thank V. Gapsys for helpful discussions. S.R. is supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation.

Author information

Affiliations

Authors

Contributions

J.H. performed the force field optimization. J.H., S.R., G.N. and M.F. ran simulations. J.H., S.R., G.N., T.R. and M.F. analyzed data. J.H., S.R., M.F., B.L.d.G., H.G. and A.D.M. wrote the manuscript. A.D.M. conceived and initiated the research.

Corresponding author

Correspondence to Alexander D MacKerell Jr.

Ethics declarations

Competing interests

A.D.M. is cofounder and CSO of SilcsBio LLC.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1–18 and Supplementary Note. (PDF 4271 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Rauscher, S., Nawrocki, G. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71–73 (2017). https://doi.org/10.1038/nmeth.4067

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing