Abstract
High-throughput sequencing (HTS) data are commonly stored as raw sequencing reads in FASTQ format or as reads mapped to a reference, in SAM format, both with large memory footprints. Worldwide growth of HTS data has prompted the development of compression methods that aim to significantly reduce HTS data size. Here we report on a benchmarking study of available compression methods on a comprehensive set of HTS data using an automated framework.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Giancarlo, R., Rombo, S.E. & Utro, F. Brief. Bioinform. 15, 390–406 (2014).
- 2
Holland, R.C. & Lynch, N. GigaScience 2, 5 (2013).
- 3
Deorowicz, S. & Grabowski, S. Algorithms Mol. Biol. 8, 25 (2013).
- 4
Roguski, L. & Deorowicz, S. Bioinformatics 30, 2213–2215 (2014).
- 5
Dutta, A., Haque, M.M., Bose, T., Reddy, C.V. & Mande, S.S. J Bioinform. Comput. Biol. 13, 1541003 (2015).
- 6
Bonfield, J.K. & Mahoney, M.V. PLoS One 8, e59190 (2013).
- 7
Nicolae, M., Pathak, S. & Rajasekaran, S. Bioinformatics 31, 3276–3281 (2015).
- 8
Hach, F., Numanagić, I., Alkan, C. & Sahinalp, S.C. Bioinformatics 28, 3051–3057 (2012).
- 9
Grabowski, S., Deorowicz, S. & Roguski, L. Bioinformatics 31, 1389–1395 (2015).
- 10
Patro, R. & Kingsford, C. Bioinformatics 31, 2770–2777 (2015).
- 11
Cox, A.J., Bauer, M.J., Jakobi, T. & Rosone, G. Bioinformatics 1415–1419 (2012).
- 12
Zhang, Y. et al. BMC Bioinformatics 16, 188 (2015).
- 13
Jones, D.C., Ruzzo, W.L., Peng, X. & Katze, M.G. Nucleic Acids Res. 40, e171 (2012).
- 14
Benoit, G. et al. BMC Bioinformatics 16, 288 (2015).
- 15
Kingsford, C. & Patro, R. Bioinformatics 31, 1920–1928 (2015).
- 16
Zhang, Y., Patel, K., Endrawis, T., Bowers, A. & Sun, Y. Gene 579, 75–81 (2016).
- 17
Li, H. et al. Bioinformatics 25, 2078–2079 (2009).
- 18
Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J. & Prins, P. Bioinformatics 31, 2032–2034 (2015).
- 19
Hsi-Yang Fritz, M., Leinonen, R., Cochrane, G. & Birney, E. Genome Res. 21, 734–740 (2011).
- 20
Bonfield, J.K. Bioinformatics 30, 2818–2819 (2014).
- 21
Hach, F., Numanagić, I. & Sahinalp, S.C. Nat. Methods 11, 1082–1084 (2014).
- 22
Ochoa, I., Hernaez, M. & Weissman, T. J. Bioinform. Comput. Biol. 12, 1442002 (2014).
- 23
Voges, J., Munderloh, M. & Ostermann, J. Predictive coding of aligned next-generation sequencing data. In Proc. 2016 Data Compression Conference 241–250 (IEEE, 2016).
Acknowledgements
This research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers program 'Cancer Genome Collaboratory' project (S.C.S., F.H., I.N.); the Vanier Canada Graduate Scholarships program (I.N.); National Institutes of Health (NIH) (R01GM108348 to S.C.S.); National Science Foundation (NSF) (1619081 to S.C.S.); Indiana University Grant Challenges Program Precision Health Initiative (S.C.S.); Wellcome Trust (098051 to J.K.B.); Leibniz Universität Hannover eNIFE grant (J.V. and J.O.); Swiss Platform for Advanced Scientific Computing (PASC) PoSeNoGap project (C.A. and M.M.). We would also like to thank the authors of evaluated compression tools for providing support for their tools and replying to our bug reports.
Author information
Affiliations
Contributions
The study was initiated by I.N., C.A. and M.M. I.N. designed the benchmarking framework and performed the experiments. J.K.B. evaluated the framework. I.N., J.K.B., J.V., J.O., F.H., C.A., M.M. and S.C.S. contributed to writing the manuscript. S.C.S. and F.H. oversaw the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figure 1, Supplementary Tables 1–7 and Supplementary Notes 1–6. (PDF 2002 kb)
Rights and permissions
About this article
Cite this article
Numanagić, I., Bonfield, J., Hach, F. et al. Comparison of high-throughput sequencing data compression tools. Nat Methods 13, 1005–1008 (2016). https://doi.org/10.1038/nmeth.4037
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion
Bone (2021)
-
Sketching algorithms for genomic data analysis and querying in a secure enclave
Nature Methods (2020)
-
A New Lossless DNA Compression Algorithm Based on A Single-Block Encoding Scheme
Algorithms (2020)
-
Transcriptome Landscape of Intracellular Brucella ovis Surviving in RAW264.7 Macrophage Immune System
Inflammation (2020)
-
Vertical lossless genomic data compression tools for assembled genomes: A systematic literature review
PLOS ONE (2020)