Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Vibrio natriegens as a fast-growing host for molecular biology

Abstract

A rapidly growing bacterial host would be desirable for a range of routine applications in molecular biology and biotechnology. The bacterium Vibrio natriegens has the fastest growth rate of any known organism, with a reported doubling time of <10 min. We report the development of genetic tools and methods to engineer V. natriegens and demonstrate the advantages of using these engineered strains in common biotech processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth comparison of V. natriegens to several commonly used E. coli strains.
Figure 2: GFP expression from V. natriegens with an inducible T7 RNA polymerase driving expression of a plasmid-borne gene under a T7 promoter.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Eagon, R.G. J. Bacteriol. 83, 736–737 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Payne, W.J. J. Bacteriol. 76, 301–307 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Payne, W.J., Eagon, R.G. & Williams, A.K. Antonie van Leeuwenhoek 27, 121–128 (1961).

    Article  CAS  Google Scholar 

  4. Maida, I. et al. Genome Announc. 1, e00648–13 (2013).

    Article  Google Scholar 

  5. Simon, R., Priefer, U. & Pühler, A. Nat. Biotechnol. 1, 784–791 (1983).

    Article  CAS  Google Scholar 

  6. Wanner, B.L., Kodaira, R. & Neidhardt, F.C. J. Bacteriol. 130, 212–222 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brosius, J., Erfle, M. & Storella, J. J. Biol. Chem. 260, 3539–3541 (1985).

    CAS  PubMed  Google Scholar 

  8. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  9. Remaut, E., Stanssens, P. & Fiers, W. Gene 15, 81–93 (1981).

    Article  CAS  Google Scholar 

  10. Bernard, P., Gabant, P., Bahassi, E.M. & Couturier, M. Gene 148, 71–74 (1994).

    Article  CAS  Google Scholar 

  11. Langer, S.J., Ghafoori, A.P., Byrd, M. & Leinwand, L. Nucleic Acids Res. 30, 3067–3077 (2002).

    Article  CAS  Google Scholar 

  12. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  13. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  14. Baumann, P., Baumann, L. & Mandel, M. J. Bacteriol. 107, 268–294 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Edelman, A., Joliff, G., Klier, A. & Rapoport, G. FEMS Microbiol. Lett. 52, 117–120 (1988).

    Article  CAS  Google Scholar 

  16. Biedendieck, R. et al. J. Biotechnol. 132, 426–430 (2007).

    Article  CAS  Google Scholar 

  17. Käll, L., Krogh, A. & Sonnhammer, E.L.L. J. Mol. Biol. 338, 1027–1036 (2004).

    Article  Google Scholar 

  18. Oliver, J.D. FEMS Microbiol. Rev. 34, 415–425 (2010).

    Article  CAS  Google Scholar 

  19. Kong, I.S. et al. FEMS Microbiol. Ecol. 50, 133–142 (2004).

    Article  CAS  Google Scholar 

  20. Abe, A., Ohashi, E., Ren, H., Hayashi, T. & Endo, H. Microbiol. Res. 162, 130–138 (2007).

    Article  CAS  Google Scholar 

  21. Casali, N. Methods Mol. Biol. 235, 27–48 (2003).

    CAS  PubMed  Google Scholar 

  22. Pósfai, G. et al. Science 312, 1044–1046 (2006).

    Article  Google Scholar 

  23. Morimoto, T. et al. DNA Res. 15, 73–81 (2008).

    Article  CAS  Google Scholar 

  24. Gibson, D.G. Nat. Methods 11, 521–526 (2014).

    Article  CAS  Google Scholar 

  25. Annaluru, N. et al. Science 344, 55–58 (2014).

    Article  CAS  Google Scholar 

  26. Haimovich, A.D., Muir, P. & Isaacs, F.J. Nat. Rev. Genet. 16, 501–516 (2015).

    Article  CAS  Google Scholar 

  27. Hutchison, C.A. III et al. Science 351, aad6253 (2016).

    Article  Google Scholar 

  28. Robson, R.L., Jones, R., Robson, R.M., Schwartz, A. & Richardson, T.H. PLoS One 10, e0127997 (2015).

    Article  Google Scholar 

  29. Aziz, R.K. et al. BMC Genomics 9, 75 (2008).

    Article  Google Scholar 

  30. Varani, A.M., Siguier, P., Gourbeyre, E., Charneau, V. & Chandler, M. Genome Biol. 12, R30 (2011).

    Article  CAS  Google Scholar 

  31. Zhou, Y., Liang, Y., Lynch, K.H., Dennis, J.J. & Wishart, D.S. Nucleic Acids Res. 39, 8857–8868 (2011).

    Article  CAS  Google Scholar 

  32. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. Nucleic Acids Res. 38, D234–D236 (2010).

    Article  CAS  Google Scholar 

  33. Weisstein, E.W. MathWorld—A Wolfram Web Resource http://mathworld.wolfram.com/LeastSquaresFittingExponential.html (accessed 24 June 2016).

  34. Inoue, H., Nojima, H. & Okayama, H. Gene 96, 23–28 (1990).

    Article  CAS  Google Scholar 

  35. Darling, A.C.E., Mau, B., Blattner, F.R. & Perna, N.T. Genome Res. 14, 1394–1403 (2004).

    Article  CAS  Google Scholar 

  36. Darling, A.E., Mau, B. & Perna, N.T. PLoS One 5, e11147 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Fu, C. Ludka, R. Morey, and J. Gill for assistance with genome sequencing; A. Schwartz and D. Brami for assistance with genome assembly and annotation; T. Richardson and V. Akella for providing bioinformatics analysis and support; B. Griffin and R. Monds for technical advice; and J.C. Venter, H. Smith, O. Fetzer, and T. Peterson for their support and input on the project.

Author information

Authors and Affiliations

Authors

Contributions

M.T.W. conceived the study; M.T.W., E.D.H., C.M.W., and D.G.G. designed experiments; M.T.W., E.D.H., and C.M.W. performed experiments; M.T.W., E.D.H., C.M.W., and D.G.G. analyzed data and wrote the paper.

Corresponding authors

Correspondence to Matthew T Weinstock or Daniel G Gibson.

Ethics declarations

Competing interests

M.T.W., E.D.H., C.M.W. and D.G.G. are employed by Synthetic Genomics, Inc. (SGI), a privately held company that funded this work. SGI has filed a provisional application with the US Patent and Trademark Office on aspects of this research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1–4 and Supplementary Notes 1–5. (PDF 2717 kb)

Supplementary Data

Plasmid sequences. (ZIP 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstock, M., Hesek, E., Wilson, C. et al. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 13, 849–851 (2016). https://doi.org/10.1038/nmeth.3970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing