Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantitative assessment of fluorescent proteins


The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight β-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Excitation and emission spectra of several commonly used FPs across the visible region.
Figure 2: Log–log plot of photobleaching rates versus illumination power as measured by laser-scanning microscopy.
Figure 3: Wide-field fluorescence images of FP–CytERM fusion proteins expressed in live cells.


  1. 1

    Goldman, R.D., Swedlow, J. & Spector, D.L. Live Cell Imaging: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, 2010).

  2. 2

    Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  3. 3

    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  4. 4

    Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  6. 6

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  7. 7

    Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Kremers, G.J., Gilbert, S.G., Cranfill, P.J., Davidson, M.W. & Piston, D.W. Fluorescent proteins at a glance. J. Cell Sci. 124, 157–160 (2011).

    Article  CAS  Google Scholar 

  9. 9

    Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. & Remington, S.J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647 (2006).

    Article  CAS  Google Scholar 

  10. 10

    Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  11. 11

    Follenius-Wund, A. et al. Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process. Biophys. J. 85, 1839–1850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Cubitt, A.B. et al. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455 (1995).

    Article  CAS  Google Scholar 

  14. 14

    Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    PubMed  Google Scholar 

  15. 15

    Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  Google Scholar 

  16. 16

    Yang, T.T. et al. Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J. Biol. Chem. 273, 8212–8216 (1998).

    Article  CAS  Google Scholar 

  17. 17

    Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Kremers, G.-J. & Piston, D. Photoconversion of purified fluorescent proteins and dual-probe optical highlighting in live cells. J. Vis. Exp. 40, 1995 (2010).

    Google Scholar 

  20. 20

    Piston, D.W., Patterson, G.H. & Knobel, S.M. Quantitative imaging of the green fluorescent protein (GFP). Methods Cell Biol. 58, 31–48 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Patterson, G.H. & Piston, D.W. Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Hirschfeld, T. Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Appl. Opt. 15, 3135–3139 (1976).

    Article  CAS  Google Scholar 

  23. 23

    Song, L., Hennink, E.J., Young, I.T. & Tanke, H.J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Sandison, D.R., Piston, D.W., Williams, R.M. & Webb, W.W. Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes. Appl. Opt. 34, 3576–3588 (1995).

    Article  CAS  Google Scholar 

  25. 25

    Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bogdanov, A.M. et al. Cell culture medium affects GFP photostability: a solution. Nat. Methods 6, 859–860 (2009).

    Article  CAS  Google Scholar 

  27. 27

    Dempsey, W.P. et al. In vivo single-cell labeling by confined primed conversion. Nat. Methods 12, 645–648 (2015).

    Article  CAS  Google Scholar 

  28. 28

    Axelrod, D. Chapter 7: Total internal reflection fluorescence microscopy. Methods Cell Biol. 89, 169–221 (2008).

    Article  CAS  Google Scholar 

  29. 29

    Swedlow, J.R., Sedat, J.W. & Agard, D.A. Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell 73, 97–108 (1993).

    Article  CAS  Google Scholar 

  30. 30

    Gustafsson, M.G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Hiraoka, Y., Sedat, J.W. & Agard, D.A. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys. J. 57, 325–333 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Carlton, P.M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl. Acad. Sci. USA 107, 16016–16022 (2010).

    Article  Google Scholar 

  33. 33

    Tomer, R., Khairy, K. & Keller, P.J. Light sheet microscopy in cell biology. Methods Mol. Biol. 931, 123–137 (2013).

    Article  CAS  Google Scholar 

  34. 34

    Ward, W.W. Biochemical and physical properties of green fluorescent protein. Methods Biochem. Anal. 47, 39–65 (2006).

    PubMed  Google Scholar 

  35. 35

    Costantini, L.M., Fossati, M., Francolini, M. & Snapp, E.L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic 13, 643–649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  37. 37

    Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).

    Article  CAS  Google Scholar 

  38. 38

    Terskikh, A. et al. “Fluorescent timer”: protein that changes color with time. Science 290, 1585–1588 (2000).

    Article  CAS  Google Scholar 

  39. 39

    Valentin, G. et al. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat. Methods 2, 801 (2005).

    Article  CAS  Google Scholar 

  40. 40

    Kremers, G.J., Hazelwood, K.L., Murphy, C.S., Davidson, M.W. & Piston, D.W. Photoconversion in orange and red fluorescent proteins. Nat. Methods 6, 355–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Chen, S.X. et al. Quantification of factors influencing fluorescent protein expression using RMCE to generate an allelic series in the ROSA26 locus in mice. Dis. Model. Mech. 4, 537–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Katayama, H., Yamamoto, A., Mizushima, N., Yoshimori, T. & Miyawaki, A. GFP-like proteins stably accumulate in lysosomes. Cell Struct. Funct. 33, 1–12 (2008).

    Article  CAS  Google Scholar 

  43. 43

    Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).

    Article  CAS  Google Scholar 

  44. 44

    Subach, O.M., Cranfill, P.J., Davidson, M.W. & Verkhusha, V.V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6, e28674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Goedhart, J. et al. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7, 137–139 (2010).

    Article  CAS  Google Scholar 

  46. 46

    Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  Google Scholar 

  48. 48

    Markwardt, M.L. et al. An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6, e17896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Ai, H.W., Henderson, J.N., Remington, S.J. & Campbell, R.E. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400, 531–540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Zapata-Hommer, O. & Griesbeck, O. Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol. 3, 5 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Cubitt, A.B., Woollenweber, L.A. & Heim, R. Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol. 58, 19–30 (1999).

    Article  CAS  Google Scholar 

  52. 52

    Nguyen, A.W. & Daugherty, P.S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355–360 (2005).

    Article  CAS  Google Scholar 

  53. 53

    Lam, A.J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Shaner, N.C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Karasawa, S., Araki, T., Nagai, T., Mizuno, H. & Miyawaki, A. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 381, 307–312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  Google Scholar 

  57. 57

    Merzlyak, E.M. et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4, 555–557 (2007).

    Article  CAS  Google Scholar 

  58. 58

    Haas, J., Park, E.C. & Seed, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6, 315–324 (1996).

    Article  CAS  Google Scholar 

  59. 59

    Kredel, S. et al. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4, e4391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  61. 61

    Shemiakina, I.I. et al. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun. 3, 1204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Lin, M.Z. et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 16, 1169–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Chu, J. et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 11, 572–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

Download references


This work was supported in part by NIH grants R01DK085064, R01DK098659, S10OD010681 and P20GM072048 to D.W.P.

Author information




D.W.P., A.U. and M.W.D. designed the research; P.J.C., B.R.S., M.A.B., J.R.A., Z.L., H.M.d.G. and G.-J.K. performed experiments and analyzed data; D.W.P. wrote and edited the paper with comments from all authors.

Corresponding author

Correspondence to David W Piston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2 and Supplementary Note (PDF 3313 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cranfill, P., Sell, B., Baird, M. et al. Quantitative assessment of fluorescent proteins. Nat Methods 13, 557–562 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing