Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Monovar: single-nucleotide variant detection in single cells

Abstract

Current variant callers are not suitable for single-cell DNA sequencing, as they do not account for allelic dropout, false-positive errors and coverage nonuniformity. We developed Monovar (https://bitbucket.org/hamimzafar/monovar), a statistical method for detecting and genotyping single-nucleotide variants in single-cell data. Monovar exhibited superior performance over standard algorithms on benchmarks and in identifying driver mutations and delineating clonal substructure in three different human tumor data sets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monovar algorithm and performance in a normal cell line.
Figure 2: Application of Monovar to human tumor samples.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Navin, N.E. Genome Res. 25, 1499–1507 (2015).

    Article  CAS  Google Scholar 

  2. Wang, Y. & Navin, N.E. Mol. Cell 58, 598–609 (2015).

    Article  CAS  Google Scholar 

  3. Navin, N.E. Genome Biol. 15, 452 (2014).

    Article  Google Scholar 

  4. Navin, N. et al. Nature 472, 90–94 (2011).

    Article  CAS  Google Scholar 

  5. Garvin, T. et al. Nat. Methods 12, 1058–1060 (2015).

    Article  CAS  Google Scholar 

  6. Stegle, O., Teichmann, S.A. & Marioni, J.C. Nat. Rev. Genet. 16, 133–145 (2015).

    Article  CAS  Google Scholar 

  7. Brennecke, P. et al. Nat. Methods 10, 1093–1095 (2013).

    Article  CAS  Google Scholar 

  8. Wang, Y. et al. Nature 512, 155–160 (2014).

    Article  CAS  Google Scholar 

  9. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Science 338, 1622–1626 (2012).

    Article  CAS  Google Scholar 

  10. Wang, J., Fan, H.C., Behr, B. & Quake, S.R. Cell 150, 402–412 (2012).

    Article  CAS  Google Scholar 

  11. McKenna, A. et al. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  12. Li, H. et al. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  13. Li, R. et al. Bioinformatics 25, 1966–1967 (2009).

    Article  CAS  Google Scholar 

  14. Goya, R. et al. Bioinformatics 26, 730–736 (2010).

    Article  CAS  Google Scholar 

  15. Koboldt, D.C. et al. Genome Res. 22, 568–576 (2012).

    Article  CAS  Google Scholar 

  16. Leung, M.L., Wang, Y., Waters, J. & Navin, N.E. Genome Biol. 16, 55 (2015).

    Article  Google Scholar 

  17. Li, Y. et al. GigaScience 1, 12 (2012).

    Article  Google Scholar 

  18. Gawad, C., Koh, W. & Quake, S.R. Proc. Natl. Acad. Sci. USA 111, 17947–17952 (2014).

    Article  CAS  Google Scholar 

  19. Klein, A.M. et al. Cell 161, 1187–1201 (2015).

    Article  CAS  Google Scholar 

  20. Macosko, E.Z. et al. Cell 161, 1202–1214 (2015).

    Article  CAS  Google Scholar 

  21. Li, H. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  Google Scholar 

  22. Hodgkinson, A. & Eyre-Walker, A. Genetics 184, 233–241 (2010).

    Article  CAS  Google Scholar 

  23. You, N. et al. Bioinformatics 28, 643–650 (2012).

    Article  CAS  Google Scholar 

  24. Le, S.Q. & Durbin, R. Genome Res. 21, 952–960 (2011).

    Article  CAS  Google Scholar 

  25. Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y. & Wang, J. PLoS ONE 7, e37558 (2012).

    Article  CAS  Google Scholar 

  26. Li, H. & Durbin, R. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  27. Wang, K., Li, M. & Hakonarson, H. Nucleic Acids Res. 38, e164 (2010).

    Article  Google Scholar 

  28. Quinlan, A.R. & Hall, I.M. Bioinformatics 26, 841–842 (2010).

    Article  CAS  Google Scholar 

  29. Forbes, S.A. et al. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  Google Scholar 

  30. Futreal, P.A. et al. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  31. Adzhubei, I., Jordan, D.M. & Sunyaev, S.R. Curr. Protoc. Hum. Genet. Chapter 7, Unit 7.20 (2013).

  32. Ng, P.C. & Henikoff, S. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to N.N. from the Lefkofsky Foundation, NCI (RO1CA169244-01), NIH (R21CA174397), Agilent University Relations, and MD Anderson Knowledge Gap and Center for Genetics & Genomics. N.N. is a Damon Runyon-Rachleff Innovator (DRR-25-13), ACS Research Scholar, T.C. Hsu Endowed Scholar and Sabin Fellow. K.C. is a Sabin Fellow and was supported by an NCI grant (RO1CA172652). The study was supported by the Bosarge, Chapman and Dell Foundations and NCI (CA016672). The authors thank W. Zhou.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. was involved in all aspects. Y.W. analyzed the data. L.N. developed the algorithm. N.N. analyzed the data and wrote the manuscript. K.C. analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Nicholas Navin or Ken Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Comparison of Monovar to Standard Variant Calling Methods using Isogenic Cell Line Data

Monovar, GATK UnifiedGenotyper, GATK HaplotypeCaller and Samtools were compared using single cell exome sequencing data generated from a normal isogenic fibroblast cell line in terms of SNV detection (a) Precision versus Detection Efficiency (Recall) and (b) SNV transition and transversion spectrum for FP errors.

Supplementary Figure 2 Performance of Monovar using in Silico Down-Sampled Coverage Depth Data

Monovar and GATK HaplotypeCaller were compared in terms of (a) Precision and (b) Detection Efficiency (Recall), respectively at 40×, 30×, 20× and 10× sequencing depths, acquired via down-sampling the SKN2 SCS data.

Supplementary Figure 3 Performance of Monovar for Detecting Sub-clonal SNVs in Admixture Samples

The SNV detection (a) Precision and (b) Detection Efficiency of Monovar were measured by comparing SNVs detected from a set of datasets, created by in silico intermixing of variable numbers of SKN2 and 12 TNBC cells, with SNVs detected from SKN2 bulk sequencing data.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–6 and Supplementary Note 1 (PDF 2042 kb)

Supplementary Software

Monovar code and accessory files. (ZIP 28383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, H., Wang, Y., Nakhleh, L. et al. Monovar: single-nucleotide variant detection in single cells. Nat Methods 13, 505–507 (2016). https://doi.org/10.1038/nmeth.3835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3835

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research