Abstract
The suddenness with which single-particle cryo-electron microscopy (cryo-EM) has emerged as a method for determining high-resolution structures of biological macromolecules invites the questions, how much better can this technology get, and how fast is that likely to happen? Though we can rightly celebrate the maturation of cryo-EM as a high-resolution structure-determination tool, I believe there still are many developments to look forward to.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis
Scientific Reports Open Access 08 February 2023
-
Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection
Nature Communications Open Access 27 May 2022
-
A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI
Nature Communications Open Access 14 December 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Nogales, E. Nat. Methods 13, 24–27 (2016).
Henderson, R. Q. Rev. Biophys. 28, 171–193 (1995).
Glaeser, R.M. J. Struct. Biol. 128, 3–14 (1999).
Rosenthal, P.B. & Henderson, R. J. Mol. Biol. 333, 721–745 (2003).
Taylor, K.A. & Glaeser, R.M. J. Struct. Biol. 163, 214–223 (2008).
Kastner, B. et al. Nat. Methods 5, 53–55 (2008).
Chari, A. et al. Nat. Methods 12, 859–865 (2015).
Kelly, D.F., Dukovski, D. & Walz, T. Methods Enzymol. 481, 83–107 (2010).
Yu, G. et al. J. Struct. Biol. 187, 1–9 (2014).
Crucifix, C., Uhring, M. & Schultz, P. J. Struct. Biol. 146, 441–451 (2004).
Dashti, A. et al. Proc. Natl. Acad. Sci. USA 111, 17492–17497 (2014).
Scheres, S.H.W. J. Struct. Biol. 180, 519–530 (2012).
Callaway, E. Nature 525, 172–174 (2015).
Zernike, F. Science 121, 345–349 (1955).
Boersch, H. Z. Naturforschung A J. Phys. Sci. 2, 615–633 (1947).
Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J.M. & Baumeister, W. Proc. Natl. Acad. Sci. USA 111, 15635–15640 (2014).
Scheres, S.H. eLife 3, e03665 (2014).
Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Proc. Natl. Acad. Sci. USA 111, 11709–11714 (2014).
Breedlove, J.R. & Trammell, G.T. Science 170, 1310–1313 (1970).
Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies—Visualization of Biological Molecules in Their Native State (Oxford University Press, New York, 2006).
Glaeser, R.M., Downing, K., DeRosier, D., Chiu, W. & Frank, J. Electron Crystallography of Biological Macromolecules (Oxford University Press, New York, 2007).
Jensen, G.J. Cryo-EM (Academic Press, 2010).
Schmidt-Krey, I. & Cheng, Y. Electron Crystallography of Soluble and Membrane Proteins: Methods and Protocols (Springer, New York, 2013).
Glaeser, R.M. J. Ultrastruct. Res. 36, 466–482 (1971).
DeRosier, D.J. Ultramicroscopy 81, 83–98 (2000).
Leong, P.A., Yu, X., Zhou, Z.H. & Jensen, G.J. Methods Enzymol. 482, 369–380 (2010).
Wolf, M., DeRosier, D.J. & Grigorieff, N. Ultramicroscopy 106, 376–382 (2006).
Agard, D., Cheng, Y.F., Glaeser, R.M. & Subramaniam, S. in Advances in Imaging and Electron Physics vol. 185 (ed. Hawkes, P.W.) 113–137 (Academic Press, 2014).
Cohen, H.A., Schmid, M.F. & Chiu, W. Ultramicroscopy 14, 219–226 (1984).
Kaiser, D. How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival (W.W. Norton, New York, 2011).
Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A. & Kasevich, M.A. Phys. Rev. Lett. 74, 4763–4766 (1995).
Putnam, W.P. & Yanik, M.F. Phys. Rev. A 80, 040902(R) (2009).
Kruit, P. et al. Preprint at http://arxiv.org/ftp/arxiv/papers/1510/1510.05946.pdf (20 October 2015).
Mitchison, G. & Massar, S. Phys. Rev. A 63, 032105 (2001).
Okamoto, H. Phys. Rev. A 85, 043810 (2012).
Okamoto, H. & Nagatani, Y. Appl. Phys. Lett. 104, 062604 (2014).
Volkmann, H. Appl. Optics 5, 1720–1731 (1966).
Henderson, R. Proc. Natl. Acad. Sci. USA 110, 18037–18041 (2013).
Chen, S. et al. Ultramicroscopy 135, 24–35 (2013).
Wu, S. et al. Structure 20, 582–592 (2012).
Acknowledgements
The writing of this commentary has been supported in part by US National Institutes of Health grant GM083039. I want to especially thank R. Danev for providing the pair of images used to prepare Figure 1.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Glaeser, R. How good can cryo-EM become?. Nat Methods 13, 28–32 (2016). https://doi.org/10.1038/nmeth.3695
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.3695
This article is cited by
-
Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis
Scientific Reports (2023)
-
I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction
Nature Protocols (2022)
-
Progressive assembly of multi-domain protein structures from cryo-EM density maps
Nature Computational Science (2022)
-
CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks
Nature Methods (2022)
-
Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection
Nature Communications (2022)