Abstract
Single-particle cryo-electron microscopy (cryo-EM) has emerged over the last two decades as a technique capable of studying challenging systems that otherwise defy structural characterization. Recent technical advances have resulted in a 'quantum leap' in applicability, throughput and achievable resolution that has gained this technique worldwide attention. Here I discuss some of the major historical landmarks in the development of the cryo-EM field, ultimately leading to its present success.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
3D reconstruction from cryo-EM projection images using two spherical embeddings
Communications Biology Open Access 04 April 2022
-
Cryo-EM as a powerful tool for drug discovery: recent structural based studies of SARS-CoV-2
Applied Microscopy Open Access 25 September 2021
-
Limited-angle computed tomography with deep image and physics priors
Scientific Reports Open Access 06 September 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.


References
De Rosier, D.J. & Klug, A. Nature 217, 130–134 (1968).
Taylor, K.A. & Glaeser, R.M. Science 186, 1036–1037 (1974).
Dubochet, J., Lepault, J., Freeman, R., Berriman, J.A. & Homo, J.C. J. Microsc. 128, 219–237 (1982).
Henderson, R. et al. J. Mol. Biol. 213, 899–929 (1990).
Kühlbrandt, W. & Wang, D.N. Nature 350, 130–134 (1991).
Nogales, E., Wolf, S.G. & Downing, K.H. Nature 391, 199–203 (1998).
Gonen, T. et al. Nature 438, 633–638 (2005).
Unwin, N. Nature 373, 37–43 (1995).
Böttcher, B., Wynne, S.A. & Crowther, R.A. Nature 386, 88–91 (1997).
Conway, J.F. et al. Nature 386, 91–94 (1997).
Zhang, X. et al. Proc. Natl. Acad. Sci. USA 105, 1867–1872 (2008).
Yu, X., Jin, L. & Zhou, Z.H. Nature 453, 415–419 (2008).
Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic Press, San Diego, 1996).
Penczek, P.A., Grassucci, R.A. & Frank, J. Ultramicroscopy 53, 251–270 (1994).
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. J. Microsc. 146, 113–136 (1987).
Crowther, R.A. Phil. Trans. R. Soc. Lond. B 261, 221–230 (1971).
Van Heel, M. Ultramicroscopy 21, 111–123 (1987).
Frank, J. et al. J. Struct. Biol. 116, 190–199 (1996).
van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. J. Struct. Biol. 116, 17–24 (1996).
Ludtke, S.J., Baldwin, P.R. & Chiu, W. J. Struct. Biol. 128, 82–97 (1999).
Tang, G. et al. J. Struct. Biol. 157, 38–46 (2007).
Grigorieff, N. J. Struct. Biol. 157, 117–125 (2007).
Hohn, M. et al. J. Struct. Biol. 157, 47–55 (2007).
Scheres, S.H., Núñez-Ramírez, R., Sorzano, C.O., Carazo, J.M. & Marabini, R. Nat. Protoc. 3, 977–990 (2008).
Sigworth, F.J. J. Struct. Biol. 122, 328–339 (1998).
Scheres, S.H. J. Struct. Biol. 180, 519–530 (2012).
Brilot, A.F. et al. J. Struct. Biol. 177, 630–637 (2012).
Campbell, M.G., Veesler, D., Cheng, A., Potter, C.S. & Carragher, B. eLife 4, e06380 (2015).
Bartesaghi, A. et al. Science 348, 1147–1151 (2015).
Bai, X.C., Fernandez, I.S., McMullan, G. & Scheres, S.H.W. eLife 2, e00461 (2013).
Liao, M., Cao, E., Julius, D. & Cheng, Y. Nature 504, 107–112 (2013).
Bai, X.C. et al. Nature 525, 212–217 (2015).
Fernández, I.S. et al. Science 342, 1240585 (2013).
Hite, R.K. et al. Nature 527, 198–203 (2015).
Du, J., Lü, W., Wu, S., Cheng, Y. & Gouaux, E. Nature 526, 224–229 (2015).
von der Ecken, J. et al. Nature 519, 114–117 (2015).
Zhang, R., Alushin, G.M., Brown, A. & Nogales, E. Cell 162, 849–859 (2015).
He, Y., Fang, J., Taatjes, D.J. & Nogales, E. Nature 495, 481–486 (2013).
des Georges, A. et al. Nature 525, 491–495 (2015).
Cianfrocco, M.A. et al. Cell 152, 120–131 (2013).
Acknowledgements
I would like to thank R. Glaeser for his feedback while writing this commentary. The author is supported by grants from the US National Institute of General Medical Sciences and is a Howard Hughes Medical Institute Investigator.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat Methods 13, 24–27 (2016). https://doi.org/10.1038/nmeth.3694
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.3694
Further reading
-
3D reconstruction from cryo-EM projection images using two spherical embeddings
Communications Biology (2022)
-
Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly
Nature Methods (2022)
-
CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks
Nature Methods (2022)
-
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences
Topics in Catalysis (2022)
-
Recent advances in RNA structurome
Science China Life Sciences (2022)