Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells

Abstract

Protein O-glycosylation has key roles in many biological processes, but the repertoire of O-glycans synthesized by cells is difficult to determine. Here we describe an approach termed Cellular O-Glycome Reporter/Amplification (CORA), a sensitive method used to amplify and profile mucin-type O-glycans synthesized by living cells. Cells convert added peracetylated benzyl-α-N-acetylgalactosamine to a large variety of modified O-glycan derivatives that are secreted from cells, allowing for easy purification for analysis by HPLC and mass spectrometry (MS). Relative to conventional O-glycan analyses, CORA resulted in an 100–1,000-fold increase in sensitivity and identified a more complex repertoire of O-glycans in more than a dozen cell types from Homo sapiens and Mus musculus. Furthermore, when coupled with computational modeling, CORA can be used for predictions about the diversity of the human O-glycome and offers new opportunities to identify novel glycan biomarkers for human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of CORA.
Figure 2: The chaperone Cosmc and active T-synthase are required for production of core 1– and core 2–based Bn-O-glycans.
Figure 3: Accuracy of CORA for profiling the O-glycome.
Figure 4: Sensitivity of CORA.
Figure 5: MALDI-TOF-MS/MS profiling of the O-glycome of primary cells.

Similar content being viewed by others

References

  1. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  Google Scholar 

  2. Cummings, R.D. & Pierce, J.M. The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014).

    Article  CAS  Google Scholar 

  3. Shriver, Z., Raguram, S. & Sasisekharan, R. Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3, 863–873 (2004).

    Article  CAS  Google Scholar 

  4. Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013).

    Article  CAS  Google Scholar 

  5. Tian, E. & Ten Hagen, K.G. Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj. J. 26, 325–334 (2009).

    Article  CAS  Google Scholar 

  6. Ju, T. et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin. Appl. 7, 618–631 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ju, T., Aryal, R.P., Kudelka, M.R., Wang, Y. & Cummings, R.D. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14, 63–81 (2014).

    Article  Google Scholar 

  8. Kudelka, M.R., Ju, T., Heimburg-Molinaro, J. & Cummings, R.D. Simple sugars to complex disease—mucin-type O-glycans in cancer. Adv. Cancer Res. 126, 53–135 (2015).

    Article  CAS  Google Scholar 

  9. Furukawa, J., Fujitani, N. & Shinohara, Y. Recent advances in cellular glycomic analyses. Biomolecules 3, 198–225 (2013).

    Article  CAS  Google Scholar 

  10. Ju, T. et al. A novel fluorescent assay for T-synthase activity. Glycobiology 21, 352–362 (2011).

    Article  CAS  Google Scholar 

  11. Brockhausen, I. et al. Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase from rat liver. Biochem. Cell Biol. 70, 99–108 (1992).

    Article  CAS  Google Scholar 

  12. Vavasseur, F., Yang, J.M., Dole, K., Paulsen, H. & Brockhausen, I. Synthesis of O-glycan core 3: characterization of UDP-GlcNAc: GalNAc-R beta 3-N-acetyl-glucosaminyltransferase activity from colonic mucosal tissues and lack of the activity in human cancer cell lines. Glycobiology 5, 351–357 (1995).

    Article  CAS  Google Scholar 

  13. Okayama, M., Kimata, K. & Suzuki, S. The influence of p-nitrophenyl beta-d-xyloside on the synthesis of proteochondroitin sulfate by slices of embryonic chick cartilage. J. Biochem. 74, 1069–1073 (1973).

    CAS  PubMed  Google Scholar 

  14. Sarkar, A.K., Fritz, T.A., Taylor, W.H. & Esko, J.D. Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal beta 1→4GlcNAc beta-O-naphthalenemethanol. Proc. Natl. Acad. Sci. USA 92, 3323–3327 (1995).

    Article  CAS  Google Scholar 

  15. Fuster, M.M., Brown, J.R., Wang, L. & Esko, J.D. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res. 63, 2775–2781 (2003).

    CAS  PubMed  Google Scholar 

  16. Wilson, J.R. & Zimmerman, E.F. Yolk sac: site of developmental microheterogeneity of mouse alpha-fetoprotein. Dev. Biol. 54, 187–199 (1976).

    Article  CAS  Google Scholar 

  17. Ju, T. & Cummings, R.D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl. Acad. Sci. USA 99, 16613–16618 (2002).

    Article  CAS  Google Scholar 

  18. Wilkins, P.P., McEver, R.P. & Cummings, R.D. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J. Biol. Chem. 271, 18732–18742 (1996).

    Article  CAS  Google Scholar 

  19. Kawar, Z.S., Johnson, T.K., Natunen, S., Lowe, J.B. & Cummings, R.D. PSGL-1 from the murine leukocytic cell line WEHI-3 is enriched for core 2-based O-glycans with sialyl Lewis x antigen. Glycobiology 18, 441–446 (2008).

    Article  CAS  Google Scholar 

  20. Morelle, W. & Michalski, J.C. Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2, 1585–1602 (2007).

    Article  CAS  Google Scholar 

  21. Hsu, P.P. & Sabatini, D.M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707 (2008).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Platelet biogenesis and functions require correct protein O-glycosylation. Proc. Natl. Acad. Sci. USA 109, 16143–16148 (2012).

    Article  CAS  Google Scholar 

  23. Dube, D.H. & Bertozzi, C.R. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

    Article  CAS  Google Scholar 

  24. Babu, P. et al. Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology. Glycoconj. J. 26, 975–986 (2009).

    Article  CAS  Google Scholar 

  25. Macher, B.A., Buehler, J., Scudder, P., Knapp, W. & Feizi, T. A novel carbohydrate, differentiation antigen on fucogangliosides of human myeloid cells recognized by monoclonal antibody VIM-2. J. Biol. Chem. 263, 10186–10191 (1988).

    CAS  PubMed  Google Scholar 

  26. Sato, C. et al. Frequent occurrence of pre-existing alpha 2→8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J. Biol. Chem. 275, 15422–15431 (2000).

    Article  CAS  Google Scholar 

  27. Karlsson, N.G. & Thomsson, K.A. Salivary MUC7 is a major carrier of blood group I type O-linked oligosaccharides serving as the scaffold for sialyl Lewis x. Glycobiology 19, 288–300 (2009).

    Article  CAS  Google Scholar 

  28. Delannoy, P. et al. Benzyl-N-acetyl-alpha-D-galactosaminide inhibits the sialylation and the secretion of mucins by a mucin secreting HT-29 cell subpopulation. Glycoconj. J. 13, 717–726 (1996).

    Article  CAS  Google Scholar 

  29. Zanetta, J.P. et al. Massive in vitro synthesis of tagged oligosaccharides in 1-benzyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside treated HT-29 cells. Glycobiology 10, 565–575 (2000).

    Article  CAS  Google Scholar 

  30. Liu, J., Jin, C., Cherian, R.M., Karlsson, N.G. & Holgersson, J. O-glycan repertoires on a mucin-type reporter protein expressed in CHO cell pools transiently transfected with O-glycan core enzyme cDNAs. J. Biotechnol. 199, 77–89 (2015).

    Article  CAS  Google Scholar 

  31. Cummings, R.D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    Article  CAS  Google Scholar 

  32. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  Google Scholar 

  33. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  Google Scholar 

  34. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  Google Scholar 

  35. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  Google Scholar 

  36. Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646 (2008).

    Article  CAS  Google Scholar 

  37. Jang-Lee, J. et al. Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting and sequencing methodologies. Methods Enzymol. 415, 59–86 (2006).

    Article  CAS  Google Scholar 

  38. Dong, Q.G. et al. A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscler. Thromb. Vasc. Biol. 17, 1599–1604 (1997).

    Article  CAS  Google Scholar 

  39. Hartwell, D.W. et al. Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J. Cell Biol. 143, 1129–1141 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Heimburg-Molinaro for help in editing and D.F. Smith and J. Zeng for critical reading of the manuscript. LOX cells were a kind gift from O. Fodstad (Oslo University Hospital, Oslo, Norway). MKN45, Colo205, MDA-MB-231 and MCF7 cells were a kind gift from H. Clausen (University of Copenhagen, Copenhagen, Denmark). pPSVE1-B1a was from J.D. Esko, UCSD, La Jolla, California, USA. BaGs6 anti-Tn was a kind gift from the late G. Springer (The Chicago Medical School, Chicago, Illinois, USA). This work was supported by the US National Institutes of Health (grants U01CA168930 to T.J. and R.D.C. and P41GM103694 to R.D.C.), a Georgia Cancer Coalition (now Georgia Research Alliance (GRA)) Award (to T.J.) and the Biotechnology and Biological Sciences Research Council (grant BB/K016164/1 to A.D. and S.M.H. for Core Support for Collaborative Research). A.D. is supported by a Wellcome Trust Senior Investigator Award. We also acknowledge support from the Emory Integrated Proteomics Core.

Author information

Authors and Affiliations

Authors

Contributions

M.R.K., R.D.C. and T.J. conceived of the project. M.R.K., Y.W., N.T.S., A.D., S.M.H., R.D.C. and T.J. designed experiments. M.R.K., A.A., Y.W., D.M.D. and X.S. performed experiments. M.R.K., A.A., Y.W., A.D., S.M.H., R.D.C. and T.J. analyzed the data. M.R.K., R.D.C. and T.J. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Tongzhong Ju.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24 and Supplementary Tables 1–3 (PDF 20370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudelka, M., Antonopoulos, A., Wang, Y. et al. Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells. Nat Methods 13, 81–86 (2016). https://doi.org/10.1038/nmeth.3675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing