Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites

Abstract

The reconstruction of neuronal populations, a key step in understanding neural circuits, remains a challenge in the presence of densely packed neurites. Here we achieved automatic reconstruction of neuronal populations by partially mimicking human strategies to separate individual neurons. For populations not resolvable by other methods, we obtained recall and precision rates of approximately 80%. We also demonstrate the reconstruction of 960 neurons within 3 h.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Integrating information at different scales to progressively detect spurious links in neuronal population reconstructions.
Figure 2: Reconstruction performance of NeuroGPS-Tree.
Figure 3: Reconstruction of a neuronal population from dense and large-scale data using NeuroGPS-Tree.

References

  1. Lichtman, J.W. & Denk, W. Science 334, 618–623 (2011).

    CAS  Article  Google Scholar 

  2. Helmstaedter, M. & Mitra, P.P. Curr. Opin. Neurobiol. 22, 162–169 (2012).

    CAS  Article  Google Scholar 

  3. Meijering, E. Cytometry A 77, 693–704 (2010).

    Article  Google Scholar 

  4. Donohue, D.E. & Ascoli, G.A. Brain Res. Rev. 67, 94–102 (2011).

    Article  Google Scholar 

  5. Li, A. et al. Science 330, 1404–1408 (2010).

    CAS  Article  Google Scholar 

  6. Ragan, T. et al. Nat. Methods 9, 255–258 (2012).

    CAS  Article  Google Scholar 

  7. Silvestri, L., Bria, A., Sacconi, L., Iannello, G. & Pavone, F. Opt. Express 20, 20582–20598 (2012).

    CAS  Article  Google Scholar 

  8. Osten, P. & Margrie, T.W. Nat. Methods 10, 515–523 (2013).

    CAS  Article  Google Scholar 

  9. Wang, Y., Narayanaswamy, A., Tsai, C.-L. & Roysam, B. Neuroinformatics 9, 193–217 (2011).

    Article  Google Scholar 

  10. Wearne, S.L. et al. Neuroscience 136, 661–680 (2005).

    CAS  Article  Google Scholar 

  11. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. Nat. Biotechnol. 28, 348–353 (2010).

    CAS  Article  Google Scholar 

  12. Türetken, E., Gonzalez, G., Blum, C. & Fua, P. Neuroinformatics 9, 279–302 (2011).

    Article  Google Scholar 

  13. Zhao, T. et al. Neuroinformatics 9, 247–261 (2011).

    Article  Google Scholar 

  14. Chothani, P., Mehta, V. & Stepanyants, A. Neuroinformatics 9, 263–278 (2011).

    Article  Google Scholar 

  15. Lee, Y.-H., Lin, Y.-N., Chuang, C.-C. & Lo, C.-C. Neuroinformatics 12, 487–507 (2014).

    Article  Google Scholar 

  16. Gala, R., Chapeton, J., Jitesh, J., Bhavsar, C. & Stepanyants, A. Front. Neuroanat. 8, 37 (2014).

    Article  Google Scholar 

  17. Quan, T. et al. Sci. Rep. 3, 1414 (2013).

    CAS  Article  Google Scholar 

  18. Helmstaedter, M., Briggman, K.L. & Denk, W. Nat. Neurosci. 14, 1081–1088 (2011).

    CAS  Article  Google Scholar 

  19. Gillette, T.A., Brown, K. & Ascoli, G.A. Neuroinformatics 9, 233–245 (2011).

    Article  Google Scholar 

  20. Brown, K.M. et al. Neuroinformatics 9, 143–157 (2011).

    Article  Google Scholar 

  21. Bas, E. & Erdogmus, D. Neuroinformatics 9, 181–191 (2011).

    Article  Google Scholar 

  22. Ming, X. et al. PLoS One 8, e84557 (2013).

    Article  Google Scholar 

  23. Dijkstra, E.W. Numerische Mathematik 1, 269–271 (1959).

    Article  Google Scholar 

  24. Xiong, H. et al. Nat. Commun. 5, 3992 (2014).

    CAS  Article  Google Scholar 

  25. Zheng, T. et al. Opt. Express 21, 9839–9850 (2013).

    Article  Google Scholar 

  26. Sholl, D.A. J. Anat. 87, 387–406 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Britton Chance Center for Biomedical Photonics for advice and help in experiments. We also thank S.L. Hill and Y. Wang for suggesting Sholl analysis, as well as H. Peng and G.A. Ascoli for help with software usability and paper quality. This work is supported by the National Basic Research Program of China (grant 2011CB910401), the National Natural Science Foundation of China (grants 81327802 and 91432116), the Science Fund for Creative Research Group of China (grant 61421064), the National Key Scientific Instrument & Equipment Development Program of China (grant 2012YQ030260) and the the Director Fund of the Wuhan National Laboratory for Optoelectronics.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. and H.G. conceived of the project. S.Z. and T.Q. designed the model and wrote the manuscript. T.Q. developed the algorithm. H.Z. wrote the software. J.L., H.Z. and S.L. performed image analysis and processing. A.L. and Y.L. constructed the computing platform for image preprocessing. S.Z., H.G., X.L. and Q.L. produced data. All authors revised the paper.

Corresponding authors

Correspondence to Hui Gong or Shaoqun Zeng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23, Supplementary Notes 1 and 2 and Supplementary Discussion (PDF 4305 kb)

Source data to Supplementary Figure 4

Source data to Supplementary Figure 10

Source data to Supplementary Figure 13

Source data to Supplementary Figure 23

Supplementary Software

NeuroGPS-Tree software (ZIP 46847 kb)

NeuroGPS-Tree_single tree

The manual reconstruction of a single neuron is faithful to the data set. (MOV 9752 kb)

NeuroGPS-Tree_slice

Maximum-intensity projections of a series of 3D image sections with the same thickness (10 μm) are used to show dense populations. (MOV 30863 kb)

NeuroGPS-Tree_Neuronal Population

Reconstruction of neuronal population from the image volume with NeuroGPS-Tree and individual neuronal trees are identified in different pseudo-colors. (MOV 26924 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quan, T., Zhou, H., Li, J. et al. NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites. Nat Methods 13, 51–54 (2016). https://doi.org/10.1038/nmeth.3662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3662

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing