Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Parmbsc1: a refined force field for DNA simulations

Abstract

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of 140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the DDD.
Figure 2: Analysis of noncanonical DNA structures.
Figure 3: Analysis of DNA-protein complexes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pérez, A., Luque, F.J. & Orozco, M. Acc. Chem. Res. 45, 196–205 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. Pérez, A., Luque, F.J. & Orozco, M. J. Am. Chem. Soc. 129, 14739–14745 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Várnai, P. & Zakrzewska, K. Nucleic Acids Res. 32, 4269–4280 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pérez, A. et al. Biophys. J. 92, 3817–3829 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zgarbová, M. et al. J. Chem. Theory Comput. 9, 2339–2354 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Krepl, M. et al. J. Chem. Theory Comput. 8, 2506–2520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wing, R. et al. Nature 287, 755–758 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Lavery, R. et al. Nucleic Acids Res. 38, 299–313 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Dans, P.D., Pérez, A., Faustino, I., Lavery, R. & Orozco, M. Nucleic Acids Res. 40, 10668–10678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lankaš, F., Špačková, N., Moakher, M., Enkhbayar, P. & Šponer, J. Nucleic Acids Res. 38, 3414–3422 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Thamann, T.J., Lord, R.C., Wang, A.H.J. & Rich, A. Nucleic Acids Res. 9, 5443–5458 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abrescia, N.G.A., González, C., Gouyette, C. & Subirana, J.A. Biochemistry 43, 4092–4100 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Cubero, E., Luque, F.J. & Orozco, M. J. Am. Chem. Soc. 123, 12018–12025 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Soyfer, V.N. & Potaman, V.N. Triple-helical Nucleic Acids 1st edn. (Springer-Verlag, 1996).

  15. Fadrná, E. et al. J. Chem. Theory Comput. 5, 2514–2530 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Martín-Pintado, N. et al. J. Am. Chem. Soc. 135, 5344–5347 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Olson, W.K., Gorin, A.A., Lu, X.-J., Hock, L.M. & Zhurkin, V.B. Proc. Natl. Acad. Sci. USA 95, 11163–11168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pérez, A., Lankas, F., Luque, F.J. & Orozco, M. Nucleic Acids Res. 36, 2379–2394 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Moroz, J.D. & Nelson, P. Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du, Q., Kotlyar, A. & Vologodskii, A. Nucleic Acids Res. 36, 1120–1128 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Šponer, J., Jurecka, P. & Hobza, P. J. Am. Chem. Soc. 126, 10142–10151 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. Hobza, P., Kabeláč, M., Šponer, J., Mejzlík, P. & Vondrášek, J. J. Comput. Chem. 18, 1136–1150 (1997).

    Article  CAS  Google Scholar 

  23. Šponer, J. et al. Chemistry 12, 2854–2865 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Orozco, M. & Luque, F.J. Chem. Phys. 182, 237–248 (1994).

    Article  CAS  Google Scholar 

  25. Colominas, C., Luque, F.J. & Orozco, M. J. Am. Chem. Soc. 118, 6811–6821 (1996).

    Article  CAS  Google Scholar 

  26. Orozco, M., Cubero, E., Hernández, B., López, J.M. & Luque, F.J. in Computational Chemistry: Reviews of Current Trends Vol. 4 (ed. Leszczynski, J.) 191–225 (World Scientific Publishing, 1999).

  27. Pérez, A. et al. Chemistry 11, 5062–5066 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. Beveridge, D.L. et al. Biophys. J. 87, 3799–3813 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Portella, G., Germann, M.W., Hud, N.V. & Orozco, M. J. Am. Chem. Soc. 136, 3075–3086 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan, R., Binkley, J.S., Seeger, R. & Pople, J.A. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  31. Woon, D.E. & Dunning, T.H. Jr. J. Chem. Phys. 98, 1358–1371 (1993).

    Article  CAS  Google Scholar 

  32. Halkier, A. et al. Chem. Phys. Lett. 286, 243–252 (1998).

    Article  CAS  Google Scholar 

  33. Halkier, A., Helgaker, T., Jørgensen, P., Klopper, W. & Olsen, J. Chem. Phys. Lett. 302, 437–446 (1999).

    Article  CAS  Google Scholar 

  34. Miertuš, S., Scrocco, E. & Tomasi, J. Chem. Phys. 55, 117–129 (1981).

    Article  Google Scholar 

  35. Miertuš, S. & Tomasi, J. Chem. Phys. 65, 239–245 (1982).

    Article  Google Scholar 

  36. Cancès, E., Mennucci, B. & Tomasi, J. J. Chem. Phys. 107, 3032–3041 (1997).

    Article  Google Scholar 

  37. Bachs, M., Luque, F.J. & Orozco, M. J. Comput. Chem. 15, 446–454 (1994).

    Article  CAS  Google Scholar 

  38. Soteras, I., Curutchet, C., Bidon-Chanal, A., Orozco, M. & Luque, F.J. J. Mol. Struct. THEOCHEM 727, 29–40 (2005).

    Article  CAS  Google Scholar 

  39. Soteras, I., Forti, F., Orozco, M. & Luque, F.J. J. Phys. Chem. B 113, 9330–9334 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Soteras, I., Orozco, M. & Luque, F.J. J. Comput. Aided Mol. Des. 24, 281–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Marenich, A.V., Cramer, C.J. & Truhlar, D.G. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Torrie, G.M. & Valleau, J.P. J. Comput. Phys. 23, 187–199 (1977).

    Article  Google Scholar 

  43. Hart, K. et al. J. Chem. Theory Comput. 8, 348–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, Z., Delaglio, F., Tjandra, N., Zhurkin, V.B. & Bax, A. J. Biomol. NMR 26, 297–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zgarbová, M. et al. J. Chem. Theory Comput. 7, 2886–2902 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hess, B., Kutzner, C., Van Der Spoel, D. & Lindahl, E. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Galindo-Murillo, R., Roe, D.R. & Cheatham, T.E. III. Nat. Commun. 5, 5152 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H.J.C. J. Comput. Phys. 23, 327–341 (1977).

    Article  CAS  Google Scholar 

  49. Hess, B., Bekker, H., Berendsen, H.J.C. & Fraaije, J.G.E.M. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  50. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  51. Berendsen, H.J.C., Grigera, J.R. & Straatsma, T.P. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  52. Smith, D.E. & Dang, L.X. J. Chem. Phys. 100, 3757–3766 (1994).

    Article  CAS  Google Scholar 

  53. Darden, T., York, D. & Pedersen, L. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  54. Liu, C., Janowski, P.A. & Case, D.A. Biochim. Biophys. Acta 1850, 1059–1071 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Arnott, S. & Hukins, D.W.L. Biochem. Biophys. Res. Commun. 47, 1504–1509 (1972).

    Article  CAS  PubMed  Google Scholar 

  56. Orozco, M., Pérez, A., Noy, A. & Luque, F.J. Chem. Soc. Rev. 32, 350–364 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Pérez, A. et al. J. Chem. Theory Comput. 1, 790–800 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Amadei, A., Linssen, A. & Berendsen, H.J.C. Proteins 17, 412–425 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Lankaš, F., Šponer, J., Hobza, P. & Langowski, J. J. Mol. Biol. 299, 695–709 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. Noy, A., Perez, A., Lankas, F., Luque, F.J. & Orozco, M. J. Mol. Biol. 343, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Andricioaei, I. & Karplus, M. J. Chem. Phys. 115, 6289–6292 (2001).

    Article  CAS  Google Scholar 

  62. Schlitter, J. Chem. Phys. Lett. 215, 617–621 (1993).

    Article  CAS  Google Scholar 

  63. Hess, B. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 8438 (2000).

    CAS  PubMed  Google Scholar 

  64. Noy, A. & Golestanian, R. Phys. Rev. Lett. 109, 228101 (2012).

    Article  PubMed  CAS  Google Scholar 

  65. Zheng, G., Czapla, L., Srinivasan, A.R. & Olson, W.K. Phys. Chem. Chem. Phys. 12, 1399–1406 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Cuervo, A. et al. Proc. Natl. Acad. Sci. USA 111, E3624–E3630 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, L., Weerasinghe, S., Smith, P.E. & Pettitt, P.M. Biophys. J. 69, 1519–1527 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hospital, A. et al. Bioinformatics 28, 1278–1279 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Hospital, A. et al. Nucleic Acids Res. 41, W47–W55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D. & Zakrzewska, K. Nucleic Acids Res. 37, 5917–5929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zweckstetter, M. Nat. Protoc. 3, 679–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Bernstein, F.C. et al. Eur. J. Biochem. 80, 319–324 (1977).

    Article  CAS  PubMed  Google Scholar 

  73. Borgias, B.A. & James, T.L. J. Magn. Reson. 87, 475–487 (1990).

    CAS  Google Scholar 

  74. Mobley, D.L., Chodera, J.D. & Dill, K.A. J. Chem. Phys. 125, 084902 (2006).

    Article  PubMed  CAS  Google Scholar 

  75. Sousa da Silva, A.W. & Vranken, W.F. BMC Res. Notes 5, 367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.O. thanks the Spanish Ministry of Science (BIO2012-32868), the Catalan SGR, the Instituto Nacional de Bioinformática and the European Research Council (ERC SimDNA) for support. M.O. is an academia researcher in the Catalan Institution for Research and Advanced Studies (ICREA). M.O. thanks the Barcelona Supercomputing Center for CPU and GPU time on MareNostrum and MinoTauro. C.A.L., S.A.H. and A.N. thank the UK HECBioSim Consortium for time on the ARCHER high-performance computing system (grant EP-L000253-1). A.N. was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; grant BB-I019294-1) and thanks ARC Leeds for computational resources. P.D.D. is a PEDECIBA (Programa de Desarrollo de las Ciencias Básicas) and SNI (Sistema Nacional de Investigadores; ANII, Uruguay) researcher. D.A.C. thanks C. Liu for assistance with the crystal simulation analysis.

Author information

Authors and Affiliations

Authors

Contributions

I.I. derived the parmbsc1 force-field parameter set. I.I., P.D.D., A.N., A.P., I.F., A.H., J.W., A.B., G.P., F.B., C.A.L. and S.A.H. performed validation simulations. C.G., M.V. and G.P. validated results from NMR-based experiments. C.G. obtained de novo NMR spectroscopy measurements. D.A.C. performed crystal MD simulations. R.G., P.A., A.H. and J.L.G. created the database infrastructure and web application. All authors contributed to data analysis. M.O. had the idea for the study, directed the project and wrote the manuscript, which was improved by the rest of the authors.

Corresponding author

Correspondence to Modesto Orozco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–31, Supplementary Tables 1–12 and Supplementary Discussion (PDF 5701 kb)

Supplementary Software

Parmbsc1 parameters (ZIP 13 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivani, I., Dans, P., Noy, A. et al. Parmbsc1: a refined force field for DNA simulations. Nat Methods 13, 55–58 (2016). https://doi.org/10.1038/nmeth.3658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing