Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging

Abstract

Circuit mapping requires knowledge of both structural and functional connectivity between cells. Although optical tools have been made to assess either the morphology and projections of neurons or their activity and functional connections, few probes integrate this information. We have generated a family of photoactivatable genetically encoded Ca2+ indicators that combines attributes of high-contrast photolabeling with high-sensitivity Ca2+ detection in a single-color protein sensor. We demonstrated in cultured neurons and in fruit fly and zebrafish larvae how single cells could be selected out of dense populations for visualization of morphology and high signal-to-noise measurements of activity, synaptic transmission and connectivity. Our design strategy is transferrable to other sensors based on circularly permutated GFP (cpGFP).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural highlighting with sPA-GCaMP6f.
Figure 2: Activity imaging with sPA-GCaMP6s and sPA-GCaMP6f.
Figure 3: Functional highlighting of connected cultured rat hippocampal neurons.
Figure 4: In vivo highlighting and imaging of neural activity in Drosophila.
Figure 5: In vivo highlighting and imaging neural and glial activity in larval zebrafish.
Figure 6: Transferability of the engineering strategy to other GECIs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Oh, S.W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Ruta, V. et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Tian, L. & Looger, L.L. Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems. Drug Discov. Today Dis. Models 5, 27–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Zucker, R.S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tian, L., Hires, S.A. & Looger, L.L. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb. Protoc. 2012, 647–656 (2012).

    Article  PubMed  Google Scholar 

  12. Whitaker, M. Genetically encoded probes for measurement of intracellular calcium. Methods Cell Biol. 99, 153–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tewson, P. et al. Simultaneous detection of Ca2+ and diacylglycerol signaling in living cells. PLoS ONE 7, e42791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakaguchi, R. et al. A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain. Bioorg. Med. Chem. 17, 7381–7386 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marvin, J.S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henderson, J.N. et al. Structure and mechanism of the photoactivatable green fluorescent protein. J. Am. Chem. Soc. 131, 4176–4177 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, J. et al. A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging. Nat. Commun. 5, 5262 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Yamada, Y. & Mikoshiba, K. Quantitative comparison of novel GCaMP-type genetically encoded Ca2+ indicators in mammalian neurons. Front. Cell. Neurosci. 6, 41 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Noguchi, J., Matsuzaki, M., Ellis-Davies, G.C. & Kasai, H. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46, 609–622 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Araya, R., Jiang, J., Eisenthal, K.B. & Yuste, R. The spine neck filters membrane potentials. Proc. Natl. Acad. Sci. USA 103, 17961–17966 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Branco, T., Staras, K., Darcy, K.J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Fox, L.E., Soll, D.R. & Wu, C.F. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation. J. Neurosci. 26, 1486–1498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohsaka, H., Okusawa, S., Itakura, Y., Fushiki, A. & Nose, A. Development of larval motor circuits in Drosophila. Dev. Growth Differ. 54, 408–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Kurusu, M. et al. Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and dachshund genes. Proc. Natl. Acad. Sci. USA 97, 2140–2144 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muto, A. & Kawakami, K. Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system. Commun. Integr. Biol. 4, 566–568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shigetomi, E., Kracun, S., Sofroniew, M.V. & Khakh, B.S. A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat. Neurosci. 13, 759–766 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bulina, M.E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Matsuda, T., Horikawa, K., Saito, K. & Nagai, T. Highlighted Ca2+ imaging with a genetically encoded 'caged' indicator. Sci. Rep. 3, 1398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thestrup, T. et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Hoi, H., Matsuda, T., Nagai, T. & Campbell, R.E. Highlightable Ca2+ indicators for live cell imaging. J. Am. Chem. Soc. 135, 46–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chuong, A.S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klapoetke, N.C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Subach, F.V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153–159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Subach, F.V., Patterson, G.H., Renz, M., Lippincott-Schwartz, J. & Verkhusha, V.V. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J. Am. Chem. Soc. 132, 6481–6491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muto, A., Ohkura, M., Abe, G., Nakai, J. & Kawakami, K. Real-time visualization of neuronal activity during perception. Curr. Biol. 23, 307–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS ONE 7, e51286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, X.R. et al. Fast GCaMPs for improved tracking of neuronal activity. Nat. Commun. 4, 2170 (2013).

    Article  PubMed  Google Scholar 

  43. Helassa, N. et al. Ultrafast genetically encoded calcium indicators for visualizing calcium flux and action potentials. Biophys. J. 106 (suppl. 1), 242a (2014).

    Article  Google Scholar 

  44. Beaudoin, G.M. III et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7, 1741–1754 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Drobizhev, M., Makarov, N.S., Tillo, S.E., Hughes, T.E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneider, M., Barozzi, S., Testa, I., Faretta, M. & Diaspro, A. Two-photon activation and excitation properties of PA-GFP in the 720–920-nm region. Biophys. J. 89, 1346–1352 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oron, D., Papagiakoumou, E., Anselmi, F. & Emiliani, V. Two-photon optogenetics. Prog. Brain Res. 196, 119–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Carroll, E.C. et al. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc. Natl. Acad. Sci. USA 112, E776–E785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suster, M.L., Kikuta, H., Urasaki, A., Asakawa, K. & Kawakami, K. Transgenesis in zebrafish with the Tol2 transposon system. Methods Mol. Biol. 561, 41–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Zelenchuk, T.A. & Brusés, J.L. In vivo labeling of zebrafish motor neurons using an mnx1 enhancer and Gal4/UAS. Genesis 49, 546–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  52. Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Hirose, M. et al. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid. J. Synchrotron Radiat. 20, 923–928 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Stanley and Z. Fu for help with molecular biology, H. Aaron for technical help with microscopy and C. Chang for fluorimeter use. We also thank R.Y. Tsien (University of California, San Diego) for the pRSETB vector, J.L. Brusés (University of Kansas) for the generous gift of the mnx1-GAL4 construct and D. Friedmann for generating the mnx1-GAL4 transgenic zebrafish line. The work was supported by US National Science Foundation (NSF) Graduate Research Fellowship (1106400; Z.L.N.), NSF Major Research Instrumentation (1041078; E.Y.I.), US National Institute of General Medical Sciences (R01 GM068552; J.C.L.) and US National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (2PN2EY01824; E.Y.I.).

Author information

Authors and Affiliations

Authors

Contributions

S.B., E.C.C. and E.Y.I. conceived of the project. S.B. designed and constructed all the clones with help from H.O.O. S.B. performed all experiments in cultured cells and patching experiments. Z.L.N. maintained transgenic Drosophila lines and conducted larval Drosophila experiments with help from S.B. and E.C.C. B.K. conducted adult Drosophila experiments with help from S.B., E.C.C. and Z.L.N. E.C.C. conducted zebrafish experiments with help from C.M.Q. and S.B. S.S.M. purified proteins with supervision of J.C.L. and N.C.R. E.C.C. and S.B. characterized the purified proteins. S.B., E.C.C. and E.Y.I. wrote the manuscript.

Corresponding author

Correspondence to Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1 and 2 and Supplementary Note (PDF 8774 kb)

short-GCaMP3-WT

Dissociated hippocampal neuron, transfected with short-GCaMP3-WT, displaying spontaneous activity. (MOV 1703 kb)

Highlighting of HeLa cells

Sequential photoactivation of sPA-GCaMP3 transfected in HeLa cells. (MOV 3059 kb)

Highlighting of a hippocampal neuron by ssPA-GCaMP6m

Repetitive photoactivation bouts targeted at the soma of a dissociated hippocampal neuron, transfected with ssPA-GCaMP6m, yield progressive highlighting of the neuron and its processes. (MOV 8968 kb)

Highlighting a hippocampal neuron by sPA-GCaMP6f

Dissociated neuron transfected with sPA-GCaMP6f undergoing highlighting (color coded). (MOV 3851 kb)

Ca2+ activity in dendrites and spines

Ca2+ activity observed in dendrites and spines, following highlighting with sPA-GCaMP6f (MOV 6625 kb)

Simultaneous photoactivation of individual cells

Simultaneous functional highlighting of many dissociated hippocampal neurons, expressing sPA-GCaMP6m, in which spontaneous activity can be seen detected. (MOV 18498 kb)

Sequential single cell photoactivation

Sequential photoactivation of closely situated dissociated neurons, enable tracing of the neurons' processes. (MOV 15599 kb)

Connected cells

sPA-GCaMP6m highlights the cell and enables imaging Ca2+ signals from the cell's soma, dendrites and spines. (AVI 16979 kb)

Simultaneous photoactivation of individual motor neuron somata in the VNC

Color-coded Highlighting of individual somata, expressing sPA-GCaMP6f, in the ventral nerve cord of a transgenic Drosophila larvae. (AVI 45241 kb)

Zebrafish glia displaying Ca2+ activity, in vivo

In vivo imaging of Ca2+ activity in many photoactivated Müller glia in Zebrafish larvae, transiently expressing sPA-GCaMP6f (color coded). (AVI 7211 kb)

Confined Ca2+ activity in glia cells, in vivo

In vivo imaging of Ca2+ activity in a single Müller glia in Zebrafish larvae, transiently expressing sPA-GCaMP6f. The cell displays distinct patters of Ca2+ activity in different regions of the cell. (AVI 3935 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, S., Carroll, E., Newman, Z. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods 12, 852–858 (2015). https://doi.org/10.1038/nmeth.3480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing