Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Correlated light and electron microscopy: ultrastructure lights up!

Subjects

Abstract

Microscopy has gone hand in hand with the study of living systems since van Leeuwenhoek observed living microorganisms and cells in 1674 using his light microscope. A spectrum of dyes and probes now enable the localization of molecules of interest within living cells by fluorescence microscopy. With electron microscopy (EM), cellular ultrastructure has been revealed. Bridging these two modalities, correlated light microscopy and EM (CLEM) opens new avenues. Studies of protein dynamics with fluorescent proteins (FPs), which leave the investigator 'in the dark' concerning cellular context, can be followed by EM examination. Rare events can be preselected at the light microscopy level before EM analysis. Ongoing development—including of dedicated probes, integrated microscopes, large-scale and three-dimensional EM and super-resolution fluorescence microscopy—now paves the way for broad CLEM implementation in biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Matching scales.
Figure 2: Examples of CLEM with distinct approaches.
Figure 3: CLEM procedures and considerations.
Figure 4: Commercial integrated CLEM microscopes.
Figure 5: Cx43 as a 'guinea pig' in CLEM probe development.
Figure 6: Sequential versus integrated CLEM.

Similar content being viewed by others

References

  1. Schnell, U., Dijk, F., Sjollema, K.A. & Giepmans, B.N. Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods 9, 152–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Deerinck, T.J. et al. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910 (1994).

    CAS  PubMed  Google Scholar 

  3. Maranto, A.R. Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217, 953–955 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Giepmans, B.N., Deerinck, T.J., Smarr, B.L., Jones, Y.Z. & Ellisman, M.H. Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods 2, 743–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Karreman, M.A. et al. Optimizing immuno-labeling for correlative fluorescence and electron microscopy on a single specimen. J. Struct. Biol. 180, 382–386 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kukulski, W. et al. Precise, correlated fluorescence microscopy and electron tomography of Lowicryl sections using fluorescent fiducial markers. Methods Cell Biol. 111, 235–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe, S. et al. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy. J. Vis. Exp. 70, e3995 (2012).

    Google Scholar 

  10. Peddie, C.J. et al. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy 143, 3–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paez-Segala, M.G. et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods 12, 215–218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nixon, S.J. et al. A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10, 131–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. van Rijnsoever, C., Oorschot, V. & Klumperman, J. Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat. Methods 5, 973–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Karreman, M.A. et al. Discovery of a new RNA-containing nuclear structure in UVC-induced apoptotic cells by integrated laser electron microscopy. Biol. Cell 101, 287–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Liv, N. et al. Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS ONE 8, e55707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faas, F.G. et al. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. J. Struct. Biol. 181, 283–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Schorb, M. & Briggs, J.A. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy 143, 24–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. van Driel, L.F., Valentijn, J.A., Valentijn, K.M., Koning, R.I. & Koster, A.J. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur. J. Cell Biol. 88, 669–684 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007).

    Article  PubMed  Google Scholar 

  20. Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R. & Nicastro, D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227, 98–109 (2007).

    Article  PubMed  Google Scholar 

  21. Müller-Reichert, T. & Verkade, P. Methods in Cell Biology Vol. 124 (Elsevier, 2014).

  22. Spiegelhalter, C., Laporte, J.F. & Schwab, Y. Correlative light and electron microscopy: from live cell dynamic to 3D ultrastructure. Methods Mol. Biol. 1117, 485–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Müller-Reichert, T. & Verkade, P. Methods in Cell Biology Vol. 111 (Elsevier, 2012).

  24. Bishop, D. et al. Near-infrared branding efficiently correlates light and electron microscopy. Nat. Methods 8, 568–570 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kopek, B.G., Shtengel, G., Xu, C.S., Clayton, D.A. & Hess, H.F. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc. Natl. Acad. Sci. USA 109, 6136–6141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sochacki, K.A., Shtengel, G., van Engelenburg, S.B., Hess, H.F. & Taraska, J.W. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat. Methods 11, 305–308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masich, S., Ostberg, T., Norlen, L., Shupliakov, O. & Daneholt, B. A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography. J. Struct. Biol. 156, 461–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Schellenberger, P. et al. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 41–51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kopek, B.G., Shtengel, G., Grimm, J.B., Clayton, D.A. & Hess, H.F. Correlative photoactivated localization and scanning electron microscopy. PLoS ONE 8, e77209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koning, R.I., Kutchoukov, V.G., Hagen, C.W. & Koster, A.J. Nanofabrication of a gold fiducial array on specimen support for electron tomography. Ultramicroscopy 135, 99–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zonnevylle, A.C. et al. Integration of a high-NA light microscope in a scanning electron microscope. J. Microsc. 252, 58–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Agronskaia, A.V. et al. Integrated fluorescence and transmission electron microscopy. J. Struct. Biol. 164, 183–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Nishiyama, H. et al. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol. 169, 438–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Maruyama, Y., Ebihara, T., Nishiyama, H., Suga, M. & Sato, C. Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J. Struct. Biol. 180, 259–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Nawa, Y. et al. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation. ChemPhysChem 15, 721–726 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Ring, E.A., Peckys, D.B., Dukes, M.J., Baudoin, J.P. & de Jonge, N. Silicon nitride windows for electron microscopy of whole cells. J. Microsc. 243, 273–283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishiyama, H. et al. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications. Ultramicroscopy 147, 86–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Solomonov, I. et al. Introduction of correlative light and airSEM microscopy imaging for tissue research under ambient conditions. Sci. Rep. 4, 5987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vidavsky, N. et al. Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA 111, 39–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Shaner, N.C., Patterson, G.H. & Davidson, M.W. Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Ogilby, P.R. Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Pagano, R.E., Sepanski, M.A. & Martin, O.C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J. Cell Biol. 109, 2067–2079 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Baker, S.M., Buckheit, R.W. III. & Falk, M.M. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol. 11, 15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jansen, L.E., Black, B.E., Foltz, D.R. & Cleveland, D.W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perkovic, M. et al. Correlative light- and electron microscopy with chemical tags. J. Struct. Biol. 186, 205–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boassa, D. et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis. J. Neurosci. 33, 2605–2615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sosinsky, G.E., Giepmans, B.N., Deerinck, T.J., Gaietta, G.M. & Ellisman, M.H. Markers for correlated light and electron microscopy. Methods Cell Biol. 79, 575–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Li, J., Wang, Y., Chiu, S.L. & Cline, H.T. Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Front. Neural Circuits 4, 6 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Atasoy, D. et al. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat. Neurosci. 17, 1830–1839 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuipers, J. et al. FLIPPER, a combinatorial probe for quantitative correlated live imaging and electron microscopy. Cell Tissue Res. 360, 61–70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martell, J.D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lam, S.S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Mironova, K.E. et al. Genetically encoded immunophotosensitizer 4D5scFv-miniSOG is a highly selective agent for targeted photokilling of tumor cells in vitro. Theranostics 3, 831–840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mercogliano, C.P. & DeRosier, D.J. Concatenated metallothionein as a clonable gold label for electron microscopy. J. Struct. Biol. 160, 70–82 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Q., Mercogliano, C.P. & Lowe, J. A ferritin-based label for cellular electron cryotomography. Structure 19, 147–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Diestra, E., Fontana, J., Guichard, P., Marco, S. & Risco, C. Visualization of proteins in intact cells with a clonable tag for electron microscopy. J. Struct. Biol. 165, 157–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Risco, C. et al. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 20, 759–766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McDonald, K.L. Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens. Microsc. Microanal. 20, 152–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Philimonenko, V.V. et al. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry. Histochem. Cell Biol. 141, 229–239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Collins, A., Warrington, A., Taylor, K.A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Betzig, E. et al. Imaging intracellular fluorescent proteins at near-molecular resolution. Science 313, 1642–1645 (2006).

    Article  PubMed  Google Scholar 

  69. Voorneveld, P.W. et al. Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147, 196–208.e13 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Suleiman, H. et al. Nanoscale protein architecture of the kidney glomerular basement membrane. eLife 2, e01149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang, Y.W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patwardhan, A. et al. A 3D cellular context for the macromolecular world. Nat. Struct. Mol. Biol. 21, 841–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Faas, F.G. et al. Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps. J. Cell Biol. 198, 457–469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ravelli, R.B. et al. Destruction of tissue, cells and organelles in type 1 diabetic rats presented at macromolecular resolution. Sci. Rep. 3, 1804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuwajima, M., Mendenhall, J.M., Lindsey, L.F. & Harris, K.M. Automated transmission-mode scanning electron microscopy (tSEM) for large volume analysis at nanoscale resolution. PLoS ONE 8, e59573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sokol, E. et al. Large-scale electron microscopy maps of patient skin and mucosa provide insight into pathogenesis of blistering diseases. J. Invest. Dermatol. doi:10.1038/jid.2015.109 (9 April 2015).

    Article  CAS  PubMed  Google Scholar 

  77. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Briggman, K.L. & Bock, D.D. Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ragan, T. et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. USA 109, 4449–4454 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Murphy, G.E. et al. Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J. Struct. Biol. 176, 268–278 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Maco, B., Holtmaat, A., Jorstad, A., Fua, P. & Knott, G.W. Correlative in vivo 2-photon imaging and focused ion beam scanning electron microscopy: 3D analysis of neuronal ultrastructure. Methods Cell Biol. 124, 339–361 (2014).

    Article  PubMed  Google Scholar 

  84. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Narayan, K. et al. Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. J. Struct. Biol. 185, 278–284 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, B.C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arsenault, J. & O'Brien, J.A. Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res. Notes 6, 544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gaietta, G.M. et al. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl. Acad. Sci. USA 103, 17777–17782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lanman, J. et al. Visualizing flock house virus infection in Drosophila cells with correlated fluorescence and electron microscopy. J. Struct. Biol. 161, 439–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Löschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Polishchuk, R.S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mali, P., Esvelt, K.M. & Church, G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koning, R.I. et al. MAVIS: an integrated system for live microscopy and vitrification. Ultramicroscopy 143, 67–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Peckys, D.B. & de Jonge, N. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20, 346–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Dukes, M.J., Peckys, D.B. & de Jonge, N. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 4110–4116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ritsma, L., Vrisekoop, N. & van Rheenen, J. In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nat. Commun. 4, 2366 (2013).

    Article  PubMed  Google Scholar 

  97. Karreman, M.A. et al. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points. PLoS ONE 9, e114448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Armer, H.E. et al. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy. PLoS ONE 4, e7716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Ham, T.J. et al. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation. Dis. Model. Mech. 7, 857–869 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hosseini, R. et al. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy 10, 1844–1857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maco, B. et al. Semiautomated correlative 3D electron microscopy of in vivo-imaged axons and dendrites. Nat. Protoc. 9, 1354–1366 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Hayworth, K.J. et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits 8, 68 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Marx, V. Brain mapping in high resolution. Nature 503, 147–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Eberle, A.L. et al. High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J. Microsc. jmi.12224 (27 January 2015).

  105. Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Duke, E., Dent, K., Razi, M. & Collinson, L.M. Biological applications of cryo-soft X-ray tomography. J. Microsc. 255, 65–70 (2014).

    CAS  PubMed  Google Scholar 

  107. Smith, E.A. et al. Correlative cryogenic tomography of cells using light and soft X-rays. Ultramicroscopy 143, 33–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Duke, E.M. et al. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 143, 77–87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Glenn, D.R. et al. Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep. 2, 865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Narváez, A.C., Weppelman, I.G.C., Moerland, R.J., Hoogenboom, J.P. & Kruit, P. Confocal filtering in cathodoluminescence microscopy of nanostructures. Appl. Phys. Lett. 104, 251121 (2014).

    Article  CAS  Google Scholar 

  111. Giepmans, B.N. Bridging fluorescence microscopy and electron microscopy. Histochem. Cell Biol. 130, 211–217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lauf, U. et al. Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc. Natl. Acad. Sci. USA 99, 10446–10451 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Deerinck, T.J., Giepmans, B.N., Smarr, B.L., Martone, M.E. & Ellisman, M.H. Light and electron microscopic localization of multiple proteins using quantum dots. Methods Mol. Biol. 374, 43–53 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.J. Peddie and L.M. Collinson for providing Figure 2d,e and our departmental members for feedback. We acknowledge financial support for our CLEM work from the Netherlands Organization for Scientific Research (ZonMW91111006; “Microscopy Valley” STW12718 and STW12714; NWO175-010-2009-023), the NanoNextNL innovation programme (09A.04) and a Marie Curie International Reintegration Grant within the 7th European Community Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacob P Hoogenboom or Ben N G Giepmans.

Ethics declarations

Competing interests

J.P.H. is cofounder and shareholder at Delmic BV, one of the manufacturers of integrated microscopes mentioned in this work.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Boer, P., Hoogenboom, J. & Giepmans, B. Correlated light and electron microscopy: ultrastructure lights up!. Nat Methods 12, 503–513 (2015). https://doi.org/10.1038/nmeth.3400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing