Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis


Data-independent acquisition (DIA) in liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) provides comprehensive untargeted acquisition of molecular data. We provide an open-source software pipeline, which we call MS-DIAL, for DIA-based identification and quantification of small molecules by mass spectral deconvolution. For a reversed-phase LC-MS/MS analysis of nine algal strains, MS-DIAL using an enriched LipidBlast library identified 1,023 lipid compounds, highlighting the chemotaxonomic relationships between the algal strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main workflow of the MS-DIAL program.
Figure 2: A deconvolution example using SWATH acquisition with HILIC positive ion mode.
Figure 3: System validation for lipid profiling, lipid coverage and chemotaxonomic relationship of nine algal species.

Similar content being viewed by others


  1. Zhu, X., Chen, Y. & Subramanian, R. Anal. Chem. 86, 1202–1209 (2014).

    Article  CAS  Google Scholar 

  2. Röst, H.L. et al. Nat. Biotechnol. 32, 219–223 (2014).

    Article  Google Scholar 

  3. Reiter, L. et al. Nat. Methods 8, 430–435 (2011).

    Article  CAS  Google Scholar 

  4. Tsugawa, H. et al. Anal. Chem. 85, 5191–5199 (2013).

    Article  CAS  Google Scholar 

  5. Nikolskiy, I. et al. Anal. Chem. 85, 7713–7719 (2013).

    Article  CAS  Google Scholar 

  6. Stein, S.E. J. Am. Soc. Mass Spectrom. 10, 770–781 (1999).

    Article  CAS  Google Scholar 

  7. Fiehn, O., Wohlgemuth, G. & Scholz, M. Proc. Lect. Notes Bioinform 3615, 224–239 (2005).

    Google Scholar 

  8. Tsugawa, H., Kanazawa, M., Ogiwara, A. & Arita, M. Bioinformatics 30, 2379–2380 (2014).

    Article  CAS  Google Scholar 

  9. Horai, H. et al. J. Mass Spectrom. 45, 703–714 (2010).

    Article  CAS  Google Scholar 

  10. Kind, T. et al. Nat. Methods 10, 755–758 (2013).

    Article  CAS  Google Scholar 

  11. Wold, S., Sjostrom, M. & Eriksson, L. Chemometr. Chemometr. Intell. Lab. 58, 109–130 (2001).

    Article  CAS  Google Scholar 

  12. Yap, C.W. J. Comput. Chem. 32, 1466–1474 (2011).

    Article  CAS  Google Scholar 

  13. Gladu, P.K., Patterson, G.W., Wikfors, G.H. & Smith, B.C. J. Phycol. 31, 774–777 (1995).

    Article  CAS  Google Scholar 

  14. Kind, T. et al. J. Chromatogr. A 1244, 139–147 (2012).

    Article  CAS  Google Scholar 

  15. Haigh, W.G. et al. Biochim. Biophys. Acta 1299, 183–190 (1996).

    Article  Google Scholar 

  16. Giroud, C., Gerber, A. & Eichenberger, W. Plant Cell Physiol. 29, 587–595 (1988).

    CAS  Google Scholar 

  17. Schymanski, E.L. & Neumann, S. Metabolites 3, 412–439 (2013).

    Article  CAS  Google Scholar 

  18. Sumner, L.W. et al. Metabolomics 3, 211–221 (2007).

    Article  CAS  Google Scholar 

  19. Creek, D.J. et al. Metabolomics 10, 350–353 (2014).

    Article  CAS  Google Scholar 

  20. Egertson, J.D. et al. Nat. Methods 10, 744–746 (2013).

    Article  CAS  Google Scholar 

  21. Savitzky, A. & Golay, M.J.E. Anal. Chem. 36, 1627–1639 (1964).

    Article  CAS  Google Scholar 

  22. Lommen, A. Anal. Chem. 81, 3079–3086 (2009).

    Article  CAS  Google Scholar 

  23. Windig, W., Phalp, J.M. & Payne, A.W. Anal. Chem. 68, 3602–3606 (1996).

    Article  CAS  Google Scholar 

  24. Hiller, K. et al. Anal. Chem. 81, 3429–3439 (2009).

    Article  CAS  Google Scholar 

  25. Katajamaa, M., Miettinen, J. & Oresic, M. Bioinformatics 22, 634–636 (2006).

    Article  CAS  Google Scholar 

  26. Sud, M. et al. Nucleic Acids Res. 35, D527–D532 (2006).

    Article  Google Scholar 

  27. Cavalier-Smith, T. Biol. Rev. Camb. Philos. Soc. 73, 203–266 (1998).

    Article  CAS  Google Scholar 

  28. Wang, Z. et al. Nature 472, 57–63 (2011).

    Article  CAS  Google Scholar 

  29. Lee, Y., Park, J.-J., Barupal, D.K. & Fiehn, O. Mol. Cell. Proteomics 11, 973–988 (2012).

    Article  CAS  Google Scholar 

  30. Higgins, B.T. & VanderGheynst, J. PLoS ONE 9, e96807 (2014).

    Article  Google Scholar 

  31. Tanadul, O.U., Vandergheynst, J.S., Beckles, D.M., Powell, A.L. & Labavitch, J.M. Biotechnol. Bioeng. 111, 1323–1331 (2014).

    Article  CAS  Google Scholar 

  32. Brand, J.J., Andersen, R.A. & Nobles, D.R. Jr. in Applied Phycology and Biotechnology Second Edition, John Wiley & Sons, Ltd, Oxford, UK 10.1002/9781118567166.ch5 (2013).

  33. Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A. & Schwudke, D. J. Lipid Res. 49, 1137–1146 (2008).

    Article  CAS  Google Scholar 

Download references


This work was supported by the US National Science Foundation (NSF)–Japan Science and Technology Agency (JST) Strategic International Collaborative Research Program (SICORP) for Japan–United States metabolomics. We also thank the Lipid MAPS consortium for providing us the lipid SDF files; ChemAxon for a free research license for the Marvin and JChem cheminformatics tools; Z. Tietel and N. Nguyen (UC Davis) for assisting with the sample preparation of algal species; T. Bamba, Y. Izumi and T. Yamada (Osaka University) for suggestions and discussion of lipid annotation; D. Yukihira (Kyushu University) for discussion of retention time prediction; and A. Ogiwara (Reyfics Inc.) for development of the ABF file and for suggestions and discussion about MS-DIAL development. H.T. was also supported by Grant-in-Aid for Young Scientists (B) (Japan) 25871136. This study was also supported by the NSF (NSF MCB 113944), National Institutes of Health (NIH) (Grants P20 HL113452 and U24 DK097154), the JST-Core Research for Evolutionary Science and Technology (JST-CREST), and Database Integration Coordination Program by the National Bioscience Database Center (Japan).

Author information

Authors and Affiliations



H.T., O.F. and M.A. designed the research. H.T. developed the MS-DIAL program. H.T. and T.C. analyzed the samples. T.C. and Y.M. contributed to the improvement of MS-DIAL program. H.T., T.K. and Y.M. performed the lipid annotations for the retention time prediction. H.T., T.K. and K.I. improved and optimized the LipidBlast library. H.T., B.H. and J.V. prepared the algal samples. M.K. developed the ABF file and the converter for this project. H.T., O.F. and M.A. thoroughly discussed this project and wrote the manuscript. T.C., T.K., B.H. and J.V. also contributed to the manuscript.

Corresponding authors

Correspondence to Oliver Fiehn or Masanori Arita.

Ethics declarations

Competing interests

Mitsuhiro Kanazawa is Representive Director and a developer in Reifycs Inc., which provides the ABF converter of mass spectral data for free at

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–4 and Supplementary Note (PDF 31983 kb)

Supplementary Data 1

Tables for the retention time prediction of lipid compounds. Excel sheet of 'Molecular descriptors (MDs)' includes 464 molecular descriptors of 254 lipid compounds calculated by the PaDEL-descriptor program. Excel sheet of 'Scaled Table of MDs' includes the auto-scaled data for partial least square (PLS) regression. The auto-scaling method uses mean-centering followed by the division by the standard deviation of each column. Excel sheets of 'Scores of PLS-R', 'Loadings of PLS-R', and 'Summary of PLS regression' include the scores, loadings, and the summary of PLS regression model, respectively. (XLSX 1639 kb)

Supplementary Data 2

Table of lipid descriptors for chemotaxonomy. The presence or absence in each of nine species is represented as a binary data matrix of size 1023 x 9. The lipid name, formula, retention time, isotope ratio, precursor m/z, and MS/MS spectrum are also included with their theoretical values or similarity scores. (XLSX 860 kb)

Supplementary Data 3

Tables of raw data matrix from total 31 LC-MS/MS experiments. The row and column include lipid names and algal names with their replicate numbers, respectively. The peak height is used as the quantification value of each lipid compound. The zero value indicates 'not detected'. The two excel sheets include the results of data-independent (SWATH) and the traditional data-dependent (DDA) methods, respectively. (XLSX 272 kb)

Supplementary Data 4

Table for the explanation of MS/MS deconvolution. The workflow of deconvolution is described with the simulation data. (XLSX 35 kb)

Supplementary Software

MS-DIAL software (ZIP 7095 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsugawa, H., Cajka, T., Kind, T. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12, 523–526 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research