Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Live-cell mass profiling: an emerging approach in quantitative biophysics

Abstract

Cell mass, volume and growth rate are tightly controlled biophysical parameters in cellular development and homeostasis, and pathological cell growth defines cancer in metazoans. The first measurements of cell mass were made in the 1950s, but only recently have advances in computer science and microfabrication spurred the rapid development of precision mass-quantifying approaches. Here we discuss available techniques for quantifying the mass of single live cells with an emphasis on relative features, capabilities and drawbacks for different applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some methods for single-cell or single-cluster mass measurements.
Figure 2: Specific refractive index increment of biomolecules.
Figure 3: Live-cell mass quantification with interference microscopy.

Similar content being viewed by others

References

  1. Lloyd, A.C. The regulation of cell size. Cell 154, 1194–1205 (2013). Recent review summarizing the current understanding of cell size control mechanisms.

    Article  CAS  PubMed  Google Scholar 

  2. O'Farrell, P.H. in Cell Growth: Control of Cell Size (eds. Hall, M.N., Raff, M. & Thomas, G.) Ch. 1, 1–22 (Cold Spring Harbor Press, 2004).

    Google Scholar 

  3. Tzur, A., Kafri, R., LeBleu, V.S., Lahav, G. & Kirschner, M.W. Cell growth and size homeostasis in proliferating animal cells. Science 325, 167–171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bryan, A.K., Engler, A., Gulati, A. & Manalis, S.R. Continuous and long-term volume measurements with a commercial coulter counter. PLoS ONE 7, e29866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mitchison, J.M. The growth of single cells: I. Schizosaccharomyces pombe. Exp. Cell Res. 13, 244–262 (1957).

    Article  CAS  PubMed  Google Scholar 

  6. Johnston, G.C., Pringle, J.R. & Hartwell, L.H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Zangle, T.A., Burnes, D., Mathis, C., Witte, O.N. & Teitell, M.A. Quantifying biomass changes of single CD8+ T cells during antigen specific cytotoxicity. PLoS ONE 8, e68916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weng, Y. et al. Mass sensors with mechanical traps for weighing single cells in different fluids. Lab Chip 11, 4174–4180 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Reed, J. et al. Rapid, massively parallel single-cell drug response measurements via live cell interferometry. Biophys. J. 101, 1025–1031 (2011). First paper demonstrating the combination of automated microscopy systems with quantitative phase imaging to make simultaneous drug-response measurements of hundreds of cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cooper, K.L. et al. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495, 375–378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking growth to cell cycle. Nature 494, 480–483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barer, R. Interference microscopy and mass determination. Nature 169, 366–367 (1952). First use of QPM to determine the dry mass of single cells.

    Article  CAS  PubMed  Google Scholar 

  13. Davies, H.G. & Wilkins, M.H.F. Interference microscopy and mass determination. Nature 169, 541 (1952).

    Article  CAS  PubMed  Google Scholar 

  14. Mitchison, J.M., Passano, L.M. & Smith, F.H. An integration method for the interference microscope. Q. J. Microsc. Sci. s3-97, 287–302, (1956).

    Google Scholar 

  15. Dyson, J. An interferometer microscope. Proc. R. Soc. Lond. A Math. Phys. Sci. 204, 170–187 (1950).

    Google Scholar 

  16. Johnson, B.N. & Mutharasan, R. Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron. 32, 1–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Zicha, D. & Dunn, G.A. An image processing system for cell behaviour studies in subconfluent cultures. J. Microsc. 179, 11–21 (1995).

    Article  Google Scholar 

  18. Levin, G.G., Kovalev, A.A., Minaev, V.L. & Sukhorukov, K.A. Error in measuring dry cell mass with a computerized interference microscope. Meas. Tech. 47, 412–416 (2004).

    Article  Google Scholar 

  19. Conlon, I.J., Dunn, G.A., Mudge, A.W. & Raff, M.C. Extracellular control of cell size. Nat. Cell Biol. 3, 918–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Conlon, I. & Raff, M. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2, 7 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl. Acad. Sci. USA 108, 13124–13129 (2011). Combination of DHM with fluorescence reporters for tracking cell-cycle progression, demonstrating measurement of cell cycle–dependent growth rate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Son, S. et al. Direct observation of mammalian cell growth and size regulation. Nat. Methods 9, 910–912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Popescu, G., Park, K., Mir, M. & Bashir, R. New technologies for measuring single cell mass. Lab Chip 14, 646–652 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Ilic, B. et al. Single cell detection with micromechanical oscillators. J. Vac. Sci. Technol. B 19, 2825–2828 (2001).

    Article  CAS  Google Scholar 

  26. Park, K. et al. Measurement of adherent cell mass and growth. Proc. Natl. Acad. Sci. USA 107, 20691–20696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burg, T.P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007). Early demonstration of the microfluidic cantilever approach, which allows for unparalleled sensitivity in mass measurements of single cells or particles.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, J., Shen, W., Payer, K., Burg, T.P. & Manalis, S.R. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett. 10, 2537–2542 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol. 14, R1014–R1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bryan, A.K., Goranov, A., Amon, A. & Manalis, S.R. Measurement of mass, density, and volume during the cell cycle of yeast. Proc. Natl. Acad. Sci. USA 107, 999–1004 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Grover, W.H. et al. Measuring single-cell density. Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ross, K.F.A. Phase Contrast and Interference Microscopy for Cell Biologists (Edward Arnold, 1967).

    Google Scholar 

  33. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  CAS  PubMed  Google Scholar 

  34. Iwai, H. et al. Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett. 29, 2399–2401 (2004).

    Article  PubMed  Google Scholar 

  35. Chun, J. et al. Rapidly quantifying drug sensitivity of dispersed and clumped breast cancer cells by mass profiling. Analyst 137, 5495–5498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reed, J. et al. Live cell interferometry reveals cellular dynamism during force propagation. ACS Nano 2, 841–846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zangle, T.A., Chun, J., Zhang, J., Reed, J. & Teitell, M.A. Quantification of biomass and cell motion in human pluripotent stem cell colonies. Biophys. J. 105, 593–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhaduri, B., Pham, H., Mir, M. & Popescu, G. Diffraction phase microscopy with white light. Opt. Lett. 37, 1094–1096 (2012).

    Article  PubMed  Google Scholar 

  39. Park, Y. et al. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. USA 107, 6731–6736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Bon, P., Savatier, J., Merlin, M., Wattelier, B. & Monneret, S. Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy. J. Biomed. Opt. 17, 076004 (2012). Application of quadriwave lateral shearing interferometry to biological samples, enabling single-shot measurement of quantitative phase images in a system that can be easily adapted to standard microscope configurations.

    Article  PubMed  CAS  Google Scholar 

  42. Ghiglia, D.C. & Pritt, M.D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

    Google Scholar 

  43. Khodjakov, A. & Rieder, C.L. Imaging the division process in living tissue culture cells. Methods 38, 2–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carl, D., Kemper, B., Wernicke, G. & von Bally, G. Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 43, 6536–6544 (2004).

    Article  PubMed  Google Scholar 

  45. Mir, M., Bhaduri, B., Wang, R., Zhu, R. & Popescu, G. in Progress in Optics Vol. 57 (ed. Wolf, E.) Ch. 3, 133–217 (Elsevier, 2012).

    Google Scholar 

  46. Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005).

    Article  PubMed  Google Scholar 

  47. Pavillon, N. et al. Early cell death detection with digital holographic microscopy. PLoS ONE 7, e30912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jourdain, P. et al. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABAA receptor. PLoS ONE 7, e51041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, Z. et al. Label-free intracellular transport measured by spatial light interference microscopy. J. Biomed. Opt. 16, 026019 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shaked, N.T., Satterwhite, L.L., Bursac, N. & Wax, A. Whole-cell analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomed. Opt. Express 1, 706–719 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ferraro, P., Wax, A. & Zalevsky, Z. Coherent Light Microscopy (Springer, 2011).

    Book  Google Scholar 

  52. Shaked, N.T., Satterwhite, L.L., Telen, M.J., Truskey, G.A. & Wax, A. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. J. Biomed. Opt. 16, 030506 (2011).

    Article  PubMed  Google Scholar 

  53. Barty, A., Nugent, K.A., Roberts, A. & Paganin, D. Quantitative phase tomography. Opt. Commun. 175, 329–336 (2000).

    Article  CAS  Google Scholar 

  54. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Sung, Y., Choi, W., Lue, N., Dasari, R.R. & Yaqoob, Z. Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy. PLoS ONE 7, e49502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013). Application of super-resolution techniques to DHM tomography, enabling precise, three-dimensional refractive index measurements within single cells.

    Article  CAS  Google Scholar 

  57. Mir, M. et al. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography. PLoS ONE 7, e39816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arnison, M.R., Larkin, K.G., Sheppard, C.J.R., Smith, N.I. & Cogswell, C.J. Linear phase imaging using differential interference contrast microscopy. J. Microsc. 214, 7–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. King, S.V., Libertun, A., Piestun, R., Cogswell, C.J. & Preza, C. Quantitative phase microscopy through differential interference imaging. J. Biomed. Opt. 13, 024020 (2008).

    Article  PubMed  Google Scholar 

  60. Kou, S.S., Waller, L., Barbastathis, G. & Sheppard, C.J.R. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt. Lett. 35, 447–449 (2010).

    Article  PubMed  Google Scholar 

  61. Phillips, K.G. et al. Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front. Oncol. 2, 72 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Marrison, J., Raty, L., Marriott, P. & O'Toole, P. Ptychography—a label free, high-contrast imaging technique for live cells using quantitative phase information. Sci. Rep. 3, 2369 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wilfinger, W.W., Mackey, K. & Chomczynski, P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22, 474–476, 478–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Zeskind, B.J. et al. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nat. Methods 4, 567–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Cheung, M.C. et al. Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping. Cytometry A 83, 540–551 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Gregory, T.R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76, 65–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Schmidt, E.V. in Cell Growth: Control of Cell Size (eds. Hall, M.N., Raff, M. & Thomas, G.) Ch. 4, 101–137 (Cold Spring Harbor Press, 2004).

    Google Scholar 

  68. Mir, M., Bergamaschi, A., Katzenellenbogen, B.S. & Popescu, G. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. PLoS ONE 9, e89000 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Creath, K. & Goldstein, G. Dynamic quantitative phase imaging for biological objects using a pixelated phase mask. Biomed. Opt. Express 3, 2866–2880 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, Z. et al. Spatial light interference microscopy. Opt. Express 19, 1016–1026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sung, Y. et al. Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karr, J.R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barer, R. Determination of dry mass, thickness, solid and water concentration in living cells. Nature 172, 1097–1098 (1953).

    Article  CAS  PubMed  Google Scholar 

  74. Popescu, G. et al. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao, H., Brown, P.H. & Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 100, 2309–2317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barer, R. & Joseph, S. Refractometry of living cells. Q. J. Microsc. Sci. s3-95, 399–423 (1954).

    Google Scholar 

  77. Wen, J. & Arakawa, T. Refractive index of proteins in aqueous sodium chloride. Anal. Biochem. 280, 327–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Armstrong, S.H., Budka, M.J.E., Morrison, K.C. & Hasson, M. Preparation and properties of serum and plasma proteins. XII. The refractive properties of the proteins of human plasma and certain purified fractions. J. Am. Chem. Soc. 69, 1747–1753 (1947).

    Article  CAS  PubMed  Google Scholar 

  79. Barer, R. & Tkaczyk, S. Refractive index of concentrated protein solutions. Nature 173, 821–822 (1954).

    Article  CAS  PubMed  Google Scholar 

  80. Chincholi, B.S., Havlik, A.J. & Vold, R.D. Specific refractive index increments of polymer systems at four wavelengths. J. Chem. Eng. Data 19, 148–152 (1974).

    Article  CAS  Google Scholar 

  81. Brown, G.L., McEwan, M.B. & Pratt, M.I. Macromolecular weight and size of deoxypentose nucleic acids. Nature 176, 161–162 (1955).

    Article  CAS  PubMed  Google Scholar 

  82. Northrop, T.G., Nutter, R.L. & Sinsheimer, R.L. Refractive increment of thymus nucleic acid. J. Am. Chem. Soc. 75, 5134–5135 (1953).

    Article  CAS  Google Scholar 

  83. Northrop, T.G. & Sinsheimer, R.L. Light scattering by tobacco mosaic virus nucleic acid. J. Chem. Phys. 22, 703–707 (1954).

    Article  CAS  Google Scholar 

  84. Davies, H.G. in General Cytochemical Methods (ed. Danielli, J.F.) 55–161 (Academic Press, 1958).

    Google Scholar 

  85. Hayes, W.M. CRC Handbook of Chemistry and Physics 94th edn. (CRC Press, 2013).

    Google Scholar 

  86. Erbe, A. & Sigel, R. Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering. Eur. Phys. J. E 22, 303–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Popescu, G., Ikeda, T., Dasari, R.R. & Feld, M.S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006).

    Article  PubMed  Google Scholar 

  88. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Bon for helpful discussions. The authors are supported by a University of California (UC) Discovery/NantWorks Bioscience Biotechnology Award (Bio07–10663), a California Institute for Regenerative Medicine (CIRM) Basic Biology 1 Award (RB1–01397), the Broad Stem Cell Research Center at UCLA Innovator Award, the US National Institutes of Health (NIH) Roadmap for Medical Research Nanomedicine Initiative (PN2EY018228), NIH grants (R01CA185189, P01GM081621, K25CA157940, R01GM073981, R01CA156674, R01CA90571) and, partially, a Translational Acceleration Grant from the Caltech-UCLA Joint Center for Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas A Zangle or Michael A Teitell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zangle, T., Teitell, M. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat Methods 11, 1221–1228 (2014). https://doi.org/10.1038/nmeth.3175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing