Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Grease matrix as a versatile carrier of proteins for serial crystallography


Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid–binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Grease-matrix carrier of protein microcrystals and its extrusion.
Figure 2: Electron density map of lysozyme obtained using microcrystals embedded in grease.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank


  1. Schlichting, I. & Miao, J. Curr. Opin. Struct. Biol. 22, 613–626 (2012).

    CAS  Article  Google Scholar 

  2. Chapman, H.N. et al. Nature 470, 73–77 (2011).

    CAS  Article  Google Scholar 

  3. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Nature 406, 752–757 (2000).

    CAS  Article  Google Scholar 

  4. Barty, A. et al. Nat. Photonics 6, 35–40 (2012).

    CAS  Article  Google Scholar 

  5. Emma, P. et al. Nat. Photonics 4, 641–647 (2010).

    CAS  Article  Google Scholar 

  6. Ishikawa, T. et al. Nat. Photonics 6, 540–544 (2012).

    CAS  Article  Google Scholar 

  7. Boutet, S. et al. Science 337, 362–364 (2012).

    CAS  Article  Google Scholar 

  8. Barends, T.R.M. Nature 505, 244–247 (2014).

    CAS  Article  Google Scholar 

  9. Johansson, L.C. et al. Nat. Methods 9, 263–265 (2012).

    CAS  Article  Google Scholar 

  10. Redecke, L. et al. Science 339, 227–230 (2013).

    CAS  Article  Google Scholar 

  11. Koopmann, R. et al. Nat. Methods 9, 259–262 (2012).

    CAS  Article  Google Scholar 

  12. Kern, J. et al. Science 340, 491–495 (2013).

    CAS  Article  Google Scholar 

  13. Weierstall, U., Spence, J.C.H. & Doak, R.B. Rev. Sci. Instrum. 83, 035108 (2012).

    CAS  Article  Google Scholar 

  14. Park, J., Joti, Y., Ishikawa, T. & Song, C. Appl. Phys. Lett. 103, 264101 (2013).

    Article  Google Scholar 

  15. Weierstall, U. et al. Nat. Commun. 5, 3309 (2014).

    Article  Google Scholar 

  16. Liu, W. et al. Science 342, 1521–1524 (2013).

    CAS  Article  Google Scholar 

  17. White, T. A. et al. J. Appl. Cryst. 45, 335–341 (2012).

    CAS  Article  Google Scholar 

  18. Falkner, J.C. et al. Chem. Mater. 17, 2679–2686 (2005).

    CAS  Article  Google Scholar 

  19. Masuda, T., Ohta, K., Mikami, B. & Kitabatake, N. Acta Crystallogr. F Struct. Biol. Commun. 67, 652–658 (2011).

    CAS  Article  Google Scholar 

  20. Hirose, M. et al. J. Synchrotron Radiat. 20, 923–928 (2013).

    CAS  Article  Google Scholar 

  21. Kameshima, T. et al. Rev. Sci. Instrum. 85, 033110 (2014).

    Article  Google Scholar 

  22. Tono, K. et al. New J. Phys. 15, 083035 (2013).

    Article  Google Scholar 

  23. Yumoto, H. et al. Nat. Photonics 7, 43–47 (2013).

    CAS  Article  Google Scholar 

  24. Duisenberg, A.J.M. J. Appl. Cryst. 25, 92–96 (1992).

    CAS  Article  Google Scholar 

  25. Leslie, A.G.W. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  26. Powell, H.R. Acta Crystallogr. D Biol. Crystallogr. 55, 1690–1695 (1999).

    CAS  Article  Google Scholar 

  27. Kabsch, W. J. Appl. Cryst. 26, 795–800 (1993).

    CAS  Article  Google Scholar 

  28. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  29. McCoy, A.J. et al. J. Appl. Cryst. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  30. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  31. Collaborative Computational Project, Number 4. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  32. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

Download references


The XFEL experiments were carried out at the BL3 of SACLA with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2012B8036, 2013A8039, 2013A8040, 2013B8044, 2013B8045 and 2014A8032). This work was supported by RIKEN, by the X-ray Free-Electron Laser Priority Strategy Program (MEXT) and partly by Research Acceleration Program of Japan Science and Technology Agency. The sample preparation of FABP3 was supported by the JST-ERATO Murata Lipid Active Structure Project. The authors thank the SACLA beamline staff for technical assistance, K. Diederichs for help with data analysis and A. Nisbet for careful reading of the manuscript.

Author information

Authors and Affiliations



M. Sugahara introduced grease-matrix extrusion scheme. M. Sugahara, E.M., E.N., M. Suzuki, T.T. and T.M. performed data collection, data processing, structure refinements (lysozyme: M. Sugahara and E.N.; glucose isomerase: E.N. and T.T.; thaumatin: T.M.; FABP3: E.M. and M. Suzuki). E.M., E.N., T.T., T.M., T.S., Y.T., C. Suno, K.I., D.P., K.K., S.S., M.M. and T.I. developed the microcrystal sample preparations and prepared samples (lysozyme: T.S., Y.T., C. Suno, K.I., D.P., E.N. and T.T.; glucose isomerase: E.N. and T.T.; thaumatin: T.M.; FABP3: E.M., K.K., S.S., M.M. and T.I.). E.N. and R.T. designed and developed the injection method. K.T. and M.Y. developed the DAPHNIS. K.T., C. Song, J.P., T.K., T.H., Y.J. and M.Y. developed the SFX systems including injectors. M. Sugahara, E.N. and C. Song wrote the manuscript with input from all the coauthors. S.I. coordinated the project.

Corresponding author

Correspondence to Michihiro Sugahara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Protein microcrystals used for SFX measurements.

(a) lysozyme, (b) glucose isomerase, (c) thaumatin and (d) FABP3 crystals. Scale bars represent 20 μm.

Supplementary Figure 2 Room-temperature structure of glucose isomerase.

(a) A typical diffraction pattern from an individual microcrystal. Resolution at the edges corresponds to ~1.6 Å. (b) A close-up view of glucose isomerase structure with (2FoFc) electron-density map (contoured at 1.0σ). This figure was drawn with the program PyMol (

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1 and 2

Grease matrix carrier of proteins and micro-extrusion.

The crystal solution was dispensed into mineral oil–based grease, and then mixed. The crystal-containing grease was inserted into a dispenser tip. After the tip was centrifuged, the sample was loaded into a syringe. The grease produced a stable flow during the SFX experiment. (AVI 10763 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sugahara, M., Mizohata, E., Nango, E. et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12, 61–63 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing