Abstract

Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid–binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

References

  1. 1.

    & Curr. Opin. Struct. Biol. 22, 613–626 (2012).

  2. 2.

    et al. Nature 470, 73–77 (2011).

  3. 3.

    , , , & Nature 406, 752–757 (2000).

  4. 4.

    et al. Nat. Photonics 6, 35–40 (2012).

  5. 5.

    et al. Nat. Photonics 4, 641–647 (2010).

  6. 6.

    et al. Nat. Photonics 6, 540–544 (2012).

  7. 7.

    et al. Science 337, 362–364 (2012).

  8. 8.

    Nature 505, 244–247 (2014).

  9. 9.

    et al. Nat. Methods 9, 263–265 (2012).

  10. 10.

    et al. Science 339, 227–230 (2013).

  11. 11.

    et al. Nat. Methods 9, 259–262 (2012).

  12. 12.

    et al. Science 340, 491–495 (2013).

  13. 13.

    , & Rev. Sci. Instrum. 83, 035108 (2012).

  14. 14.

    , , & Appl. Phys. Lett. 103, 264101 (2013).

  15. 15.

    et al. Nat. Commun. 5, 3309 (2014).

  16. 16.

    et al. Science 342, 1521–1524 (2013).

  17. 17.

    A. et al. J. Appl. Cryst. 45, 335–341 (2012).

  18. 18.

    et al. Chem. Mater. 17, 2679–2686 (2005).

  19. 19.

    , , & Acta Crystallogr. F Struct. Biol. Commun. 67, 652–658 (2011).

  20. 20.

    et al. J. Synchrotron Radiat. 20, 923–928 (2013).

  21. 21.

    et al. Rev. Sci. Instrum. 85, 033110 (2014).

  22. 22.

    et al. New J. Phys. 15, 083035 (2013).

  23. 23.

    et al. Nat. Photonics 7, 43–47 (2013).

  24. 24.

    J. Appl. Cryst. 25, 92–96 (1992).

  25. 25.

    Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

  26. 26.

    Acta Crystallogr. D Biol. Crystallogr. 55, 1690–1695 (1999).

  27. 27.

    J. Appl. Cryst. 26, 795–800 (1993).

  28. 28.

    Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

  29. 29.

    et al. J. Appl. Cryst. 40, 658–674 (2007).

  30. 30.

    & Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

  31. 31.

    Collaborative Computational Project, Number 4. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  32. 32.

    et al. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

Download references

Acknowledgements

The XFEL experiments were carried out at the BL3 of SACLA with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2012B8036, 2013A8039, 2013A8040, 2013B8044, 2013B8045 and 2014A8032). This work was supported by RIKEN, by the X-ray Free-Electron Laser Priority Strategy Program (MEXT) and partly by Research Acceleration Program of Japan Science and Technology Agency. The sample preparation of FABP3 was supported by the JST-ERATO Murata Lipid Active Structure Project. The authors thank the SACLA beamline staff for technical assistance, K. Diederichs for help with data analysis and A. Nisbet for careful reading of the manuscript.

Author information

Affiliations

  1. RIKEN SPring-8 Center, Sayo, Japan.

    • Michihiro Sugahara
    • , Eriko Nango
    • , Mamoru Suzuki
    • , Tomoyuki Tanaka
    • , Tetsuya Masuda
    • , Rie Tanaka
    • , Changyong Song
    • , Jaehyun Park
    • , Takaki Hatsui
    • , Makina Yabashi
    •  & So Iwata
  2. Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan.

    • Eiichi Mizohata
    •  & Tsuyoshi Inoue
  3. Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Japan.

    • Mamoru Suzuki
  4. Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan.

    • Tetsuya Masuda
  5. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Japan.

    • Tatsuro Shimamura
    • , Yoshiki Tanaka
    • , Chiyo Suno
    • , Kentaro Ihara
    •  & So Iwata
  6. Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Japan.

    • Dongqing Pan
  7. Japan Science and Technology Agency (JST)–Exploratory Research for Advanced Technology (ERATO), Lipid Active Structure Project, Toyonaka, Japan.

    • Keisuke Kakinouchi
    • , Shigeru Sugiyama
    •  & Michio Murata
  8. Japan Synchrotron Radiation Research Institute, Sayo, Japan.

    • Kensuke Tono
    • , Takashi Kameshima
    •  & Yasumasa Joti

Authors

  1. Search for Michihiro Sugahara in:

  2. Search for Eiichi Mizohata in:

  3. Search for Eriko Nango in:

  4. Search for Mamoru Suzuki in:

  5. Search for Tomoyuki Tanaka in:

  6. Search for Tetsuya Masuda in:

  7. Search for Rie Tanaka in:

  8. Search for Tatsuro Shimamura in:

  9. Search for Yoshiki Tanaka in:

  10. Search for Chiyo Suno in:

  11. Search for Kentaro Ihara in:

  12. Search for Dongqing Pan in:

  13. Search for Keisuke Kakinouchi in:

  14. Search for Shigeru Sugiyama in:

  15. Search for Michio Murata in:

  16. Search for Tsuyoshi Inoue in:

  17. Search for Kensuke Tono in:

  18. Search for Changyong Song in:

  19. Search for Jaehyun Park in:

  20. Search for Takashi Kameshima in:

  21. Search for Takaki Hatsui in:

  22. Search for Yasumasa Joti in:

  23. Search for Makina Yabashi in:

  24. Search for So Iwata in:

Contributions

M. Sugahara introduced grease-matrix extrusion scheme. M. Sugahara, E.M., E.N., M. Suzuki, T.T. and T.M. performed data collection, data processing, structure refinements (lysozyme: M. Sugahara and E.N.; glucose isomerase: E.N. and T.T.; thaumatin: T.M.; FABP3: E.M. and M. Suzuki). E.M., E.N., T.T., T.M., T.S., Y.T., C. Suno, K.I., D.P., K.K., S.S., M.M. and T.I. developed the microcrystal sample preparations and prepared samples (lysozyme: T.S., Y.T., C. Suno, K.I., D.P., E.N. and T.T.; glucose isomerase: E.N. and T.T.; thaumatin: T.M.; FABP3: E.M., K.K., S.S., M.M. and T.I.). E.N. and R.T. designed and developed the injection method. K.T. and M.Y. developed the DAPHNIS. K.T., C. Song, J.P., T.K., T.H., Y.J. and M.Y. developed the SFX systems including injectors. M. Sugahara, E.N. and C. Song wrote the manuscript with input from all the coauthors. S.I. coordinated the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Michihiro Sugahara.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1 and 2 and Supplementary Tables 1 and 2

Videos

  1. 1.

    Grease matrix carrier of proteins and micro-extrusion.

    The crystal solution was dispensed into mineral oil–based grease, and then mixed. The crystal-containing grease was inserted into a dispenser tip. After the tip was centrifuged, the sample was loaded into a syringe. The grease produced a stable flow during the SFX experiment.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmeth.3172

Further reading