Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A robust pipeline for rapid production of versatile nanobody repertoires


Nanobodies are single-domain antibodies derived from the variable regions of Camelidae atypical immunoglobulins. They show promise as high-affinity reagents for research, diagnostics and therapeutics owing to their high specificity, small size (15 kDa) and straightforward bacterial expression. However, identification of repertoires with sufficiently high affinity has proven time consuming and difficult, hampering nanobody implementation. Our approach generates large repertoires of readily expressible recombinant nanobodies with high affinities and specificities against a given antigen. We demonstrate the efficacy of this approach through the production of large repertoires of nanobodies against two antigens, GFP and mCherry, with Kd values into the subnanomolar range. After mapping diverse epitopes on GFP, we were also able to design ultrahigh-affinity dimeric nanobodies with Kd values as low as 30 pM. The approach presented here is well suited for the routine production of high-affinity capture reagents for various biomedical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of nanobody identification and production pipeline.
Figure 2: Characterization of VHH IgG and recombinant nanobodies.
Figure 3: Efficacy of LaG and LaM nanobodies in immunofluorescence microscopy.
Figure 4: Nanobody fluorescent protein binding.
Figure 5: Mapping of nanobody binding epitopes on GFP by NMR.

Accession codes


Protein Data Bank


  1. 1

    Cristea, I.M., Williams, R., Chait, B.T. & Rout, M.P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteomics 4, 1933–1941 (2005).

    CAS  Google Scholar 

  2. 2

    Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    CAS  Google Scholar 

  3. 3

    Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Domanski, M. et al. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels. Biotechniques doi:10.2144/000113864 (May 2012)

  5. 5

    Gingras, A.C., Aebersold, R. & Raught, B. Advances in protein complex analysis using mass spectrometry. J. Physiol. (Lond.) 563, 11–21 (2005).

    CAS  Google Scholar 

  6. 6

    Cortez-Retamozo, V. et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64, 2853–2857 (2004).

    CAS  PubMed  Google Scholar 

  7. 7

    Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    CAS  Google Scholar 

  8. 8

    Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    CAS  Google Scholar 

  9. 9

    Harmsen, M.M. & De Haard, H.J. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77, 13–22 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Romer, T., Leonhardt, H. & Rothbauer, U. Engineering antibodies and proteins for molecular in vivo imaging. Curr. Opin. Biotechnol. 22, 882–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Dumoulin, M. et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 11, 500–515 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R. & Muyldermans, S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521–526 (1997).

    CAS  PubMed  Google Scholar 

  13. 13

    Arbabi-Ghahroudi, M., Tanha, J. & MacKenzie, R. Prokaryotic expression of antibodies. Cancer Metastasis Rev. 24, 501–519 (2005).

    PubMed  Google Scholar 

  14. 14

    Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    CAS  Google Scholar 

  15. 15

    Muyldermans, S. et al. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 128, 178–183 (2009).

    CAS  PubMed  Google Scholar 

  16. 16

    Bird, R.E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    CAS  PubMed  Google Scholar 

  17. 17

    Skerra, A. & Pluckthun, A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041 (1988).

    CAS  PubMed  Google Scholar 

  18. 18

    Wörn, A. & Pluckthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010 (2001).

    PubMed  Google Scholar 

  19. 19

    Scheid, J.F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Shagin, D.A. et al. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Dörner, T. & Radbruch, A. Antibodies and B cell memory in viral immunity. Immunity 27, 384–392 (2007).

    PubMed  Google Scholar 

  22. 22

    Benner, R., Hijmans, W. & Haaijman, J.J. The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin. Exp. Immunol. 46, 1–8 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Becker, R.S. & Knight, K.L. Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell 63, 987–997 (1990).

    CAS  PubMed  Google Scholar 

  24. 24

    Knight, K.L. Restricted VH gene usage and generation of antibody diversity in rabbit. Annu. Rev. Immunol. 10, 593–616 (1992).

    CAS  PubMed  Google Scholar 

  25. 25

    Conrath, K.E. et al. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother. 45, 2807–2812 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Alvarez-Rueda, N. et al. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol. Immunol. 44, 1680–1690 (2007).

    CAS  PubMed  Google Scholar 

  27. 27

    Brohawn, S.G., Partridge, J.R., Whittle, J.R. & Schwartz, T.U. The nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Fernandez-Martinez, J. et al. Structure-function mapping of a heptameric module in the nuclear pore complex. J. Cell Biol. 196, 419–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).

    CAS  PubMed  Google Scholar 

  30. 30

    Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    CAS  Google Scholar 

  31. 31

    Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Dolman, N.J., Kilgore, J.A. & Davidson, M.W. A review of reagents for fluorescence microscopy of cellular compartments and structures, part I: BacMam labeling and reagents for vesicular structures. Curr. Protoc. Cytom. 65, 12.30 (2013).

    Google Scholar 

  33. 33

    DeGrasse, J.A. et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8, 2119–2130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. & Remington, S.J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Xia, N.S. et al. Bioluminescence of Aequorea macrodactyla, a common jellyfish species in the East China Sea. Mar. Biotechnol. (NY) 4, 155–162 (2002).

    CAS  Google Scholar 

  37. 37

    Goldflam, M., Tarrago, T., Gairi, M. & Giralt, E. NMR studies of protein-ligand interactions. Methods Mol. Biol. 831, 233–259 (2012).

    CAS  PubMed  Google Scholar 

  38. 38

    Georgescu, J. et al. Backbone HN, N, Cα and Cβ assignment of the GFPuv mutant. J. Biomol. NMR 25, 161–162 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    Khan, F., Stott, K. & Jackson, S. 1H, 15N and 13C backbone assignment of the green fluorescent protein (GFP). J. Biomol. NMR 26, 281–282 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Zuiderweg, E.R. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41, 1–7 (2002).

    CAS  Google Scholar 

  41. 41

    Battistutta, R., Negro, A. & Zanotti, G. Crystal structure and refolding properties of the mutant F99S/M153T/V163A of the green fluorescent protein. Proteins 41, 429–437 (2000).

    CAS  PubMed  Google Scholar 

  42. 42

    Neri, D., Momo, M., Prospero, T. & Winter, G. High-affinity antigen binding by chelating recombinant antibodies (CRAbs). J. Mol. Biol. 246, 367–373 (1995).

    CAS  PubMed  Google Scholar 

  43. 43

    Silverman, J. et al. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat. Biotechnol. 23, 1556–1561 (2005).

    CAS  PubMed  Google Scholar 

  44. 44

    Vanlandschoot, P. et al. Nanobodies®: new ammunition to battle viruses. Antiviral Res. 92, 389–407 (2011).

    CAS  PubMed  Google Scholar 

  45. 45

    Huang, L., Muyldermans, S. & Saerens, D. Nanobodies®: proficient tools in diagnostics. Expert Rev. Mol. Diagn. 10, 777–785 (2010).

    PubMed  Google Scholar 

  46. 46

    Revets, H., De Baetselier, P. & Muyldermans, S. Nanobodies as novel agents for cancer therapy. Expert Opin. Biol. Ther. 5, 111–124 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Vincke, C. et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284, 3273–3284 (2009).

    CAS  PubMed  Google Scholar 

  48. 48

    Els Conrath, K., Lauwereys, M., Wyns, L. & Muyldermans, S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J. Biol. Chem. 276, 7346–7350 (2001).

    CAS  PubMed  Google Scholar 

  49. 49

    Jähnichen, S. et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc. Natl. Acad. Sci. USA 107, 20565–20570 (2010).

    PubMed  Google Scholar 

  50. 50

    Roovers, R.C. et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer 129, 2013–2024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Ulrichts, H. et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 118, 757–765 (2011).

    CAS  PubMed  Google Scholar 

  52. 52

    Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    PubMed  Google Scholar 

  53. 53

    Pletneva, N.V. et al. Yellow fluorescent protein phiYFPv (Phialidium): structure and structure-based mutagenesis. Acta Crystallogr. D Biol. Crystallogr. 69, 1005–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Wall, M.A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    CAS  Google Scholar 

  56. 56

    Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Dereeper, A., Audic, S., Claverie, J.M. & Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10, 8 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Dereeper, A. et al. robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We acknowledge support from US National Institutes of Health grants U54 GM103511 and P41 GM109824 (M.P.R. and B.T.C.), P41 GM103314 (B.T.C.), and AI072529-08 and AI037526-20A1 (M.C.N.) and support from the Howard Hughes Medical Institute (M.C.N.). M.O. was supported by the Natural Sciences and Engineering Research Council of Canada, Canadian Institutes of Health Research and Fonds de recherches du Québec - Santé. We thank A. North for assistance with immunofluorescence microscopy; A. Viale and C. Zhao for support with high-throughput sequencing; A. Luz for assistance with SPR; S. Reed-Paske and the other members of Capralogics, Inc., for advice and animal husbandry; and members of the Rout and Chait laboratories, past and present, for helpful discussions and technical assistance, particularly A. Ferguson, K. Wei, H. Jiang and S. Obado.

Author information




The project was conceived of by M.P.R., B.T.C., P.C.F., Y.L., D.F. and M.C.N. Experiments relating to immunization, sample collection and processing were performed by P.C.F., M.K.T. and M.O.; J.F.S. assisted with bone marrow processing. MS was carried out by Y.L. Experimental work was supervised by M.P.R. and B.T.C. Bioinformatic analysis was performed by Y.L., S.K. and D.F. Production and characterization of recombinant nanobodies was performed by P.C.F. and M.K.T. NMR analyses were performed by I.N. The manuscript was cowritten by P.C.F., Y.L., I.N., M.P.R. and B.T.C., with contributions from all authors. M.P.R. communed with llamas in the Atacama desert.

Corresponding authors

Correspondence to David Fenyö, Brian T Chait or Michael P Rout.

Ethics declarations

Competing interests

B.T.C. and M.P.R. are inventors on a US patent application encompassing the method described in this manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1 and 2 and Supplementary Protocol (PDF 18018 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fridy, P., Li, Y., Keegan, S. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 11, 1253–1260 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing