Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Genome engineering: the next genomic revolution

A decade of advances in genome engineering technologies has enabled the editing of genome sequences much like one edits computer code; many more applications for precisely manipulating genome structure and function are on the horizon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Applications of genome-editing technologies.

Kim Caesar/Nature Publishing Group

References

  1. Pavletich, N.P. & Pabo, C.O. Science 252, 809–817 (1991).

    Article  CAS  Google Scholar 

  2. Smith, J. et al. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  Google Scholar 

  3. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Science 300, 764 (2003).

    Article  CAS  Google Scholar 

  4. Porteus, M.H. & Baltimore, D. Science 300, 763 (2003).

    Article  Google Scholar 

  5. Urnov, F.D. et al. Nature 435, 646–651 (2005).

    Article  CAS  Google Scholar 

  6. Boch, J. et al. Science 326, 1509–1512 (2009).

    Article  CAS  Google Scholar 

  7. Moscou, M.J. & Bogdanove, A.J. Science 326, 1501 (2009).

    Article  CAS  Google Scholar 

  8. Christian, M. et al. Genetics 186, 757–761 (2010).

    Article  CAS  Google Scholar 

  9. Miller, J.C. et al. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  10. Jinek, M. et al. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  11. Mali, P. et al. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  12. Cong, L. et al. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  13. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  Google Scholar 

  14. Hwang, W.Y. et al. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  Google Scholar 

  15. Soldner, F. et al. Cell 146, 318–331 (2011).

    Article  CAS  Google Scholar 

  16. Ding, Q. et al. Cell Stem Cell 12, 238–251 (2013).

    Article  CAS  Google Scholar 

  17. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Science 343, 80–84 (2014).

    Article  CAS  Google Scholar 

  18. Shalem, O. et al. Science 343, 84–87 (2014).

    Article  CAS  Google Scholar 

  19. Tebas, P. et al. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  Google Scholar 

  20. Li, H. et al. Nature 475, 217–221 (2011).

    Article  CAS  Google Scholar 

  21. Yin, H. et al. Nat. Biotechnol. 32, 551–553 (2014).

    Article  CAS  Google Scholar 

  22. Genovese, P. et al. Nature 510, 235–240 (2014).

    Article  CAS  Google Scholar 

  23. Swarts, D.C. et al. Nature 507, 258–261 (2014).

    Article  CAS  Google Scholar 

  24. Zhang, F. et al. Nat. Biotechnol. 29, 149–153 (2011).

    Article  Google Scholar 

  25. Gilbert, L.A. et al. Cell 154, 442–451 (2013).

    Article  CAS  Google Scholar 

  26. Perez-Pinera, P. et al. Nat. Methods 10, 973–976 (2013).

    Article  CAS  Google Scholar 

  27. Maeder, M.L. et al. Nat. Methods 10, 977–979 (2013).

    Article  CAS  Google Scholar 

  28. Maeder, M.L. et al. Nat. Biotechnol. 31, 1137–1142 (2013).

  29. Konermann, S. et al. Nature 500, 472–476 (2013).

    Article  CAS  Google Scholar 

  30. Esvelt, K.M. et al. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank the members of the Gersbach laboratory and our collaborators that have contributed to our work in this area. C.A.G. is supported by US National Institutes of Health (NIH) Director's New Innovator Award (DP2OD008586), US National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award (CBET-1151035), NIH R01DA036865, NIH R21AR065956 and the Muscular Dystrophy Association (MDA277360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A Gersbach.

Ethics declarations

Competing interests

C.A.G. is an inventor on patent applications related to genome engineering and a scientific advisor to Editas Medicine, a company engaged in therapeutic development of genome engineering tools.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gersbach, C. Genome engineering: the next genomic revolution. Nat Methods 11, 1009–1011 (2014). https://doi.org/10.1038/nmeth.3113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing