Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-molecule methods leap ahead

Much of our knowledge about biological systems has been obtained by examining ensembles of molecules. However, this has begun to change because of the unprecedented precision and clarity afforded by single-molecule measurements. The last decade has seen amazing advances in the resolution and complexity of these methods, making it possible to ask and answer entirely new types of biological questions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: In the past 10 years, single-molecule methods have undergone major advances so that biological problems with wider ranges of timescale, length scale and complexity can now be routinely studied.

Katie Vicari/Nature Publishing Group

Figure 2: Merging different single-molecule methods enables new capabilities that cannot be accessed using individual methods alone.

Katie Vicari/Nature Publishing Group

Figure 3

Katie Vicari/Nature Publishing Group

References

  1. Yildiz, A. et al. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  2. Muschielok, A. et al. Nat. Methods 5, 965–971 (2008).

    Article  CAS  Google Scholar 

  3. Kalinin, S. et al. Nat. Methods 9, 1218–1225 (2012).

    Article  CAS  Google Scholar 

  4. Hwang, H., Kim, H. & Myong, S. Proc. Natl. Acad. Sci. USA 108, 7414–7418 (2011).

    Article  CAS  Google Scholar 

  5. Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. & Block, S.M. Nature 438, 460–465 (2005).

    Article  CAS  Google Scholar 

  6. Liu, S. et al. Cell 157, 702–713 (2014).

    Article  CAS  Google Scholar 

  7. Rasnik, I., McKinney, S.A. & Ha, T. Nat. Methods 3, 891–893 (2006).

    Article  CAS  Google Scholar 

  8. Aitken, C.E., Marshall, R.A. & Puglisi, J.D. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  Google Scholar 

  9. Hohng, S. et al. Science 318, 279–283 (2007).

    Article  CAS  Google Scholar 

  10. Uemura, S. et al. Nature 464, 1012–1017 (2010).

    Article  CAS  Google Scholar 

  11. Chung, H.S., McHale, K., Louis, J.M. & Eaton, W.A. Science 335, 981–984 (2012).

    Article  CAS  Google Scholar 

  12. Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  13. Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M. & Scheuring, S. Science 342, 741–743 (2013).

    Article  CAS  Google Scholar 

  14. Hohng, S., Joo, C. & Ha, T. Biophys. J. 87, 1328–1337 (2004).

    Article  CAS  Google Scholar 

  15. Lee, J. et al. Angew. Chem. Int. Edn. Engl. 49, 9922–9925 (2010).

    Article  CAS  Google Scholar 

  16. Hoskins, A.A. et al. Science 331, 1289–1295 (2011).

    Article  CAS  Google Scholar 

  17. Dame, R.T., Noom, M.C. & Wuite, G.J. Nature 444, 387–390 (2006).

    Article  CAS  Google Scholar 

  18. Finkelstein, I.J., Visnapuu, M.L. & Greene, E.C. Nature 468, 983–987 (2010).

    Article  CAS  Google Scholar 

  19. Comstock, M.J., Ha, T. & Chemla, Y.R. Nat. Methods 8, 335–340 (2011).

    Article  CAS  Google Scholar 

  20. del Rio, A. et al. Science 323, 638–641 (2009).

    Article  CAS  Google Scholar 

  21. Ma, J., Bai, L. & Wang, M.D. Science 340, 1580–1583 (2013).

    Article  CAS  Google Scholar 

  22. Lipfert, J., Kerssemakers, J.W., Jager, T. & Dekker, N.H. Nat. Methods 7, 977–980 (2010).

    Article  CAS  Google Scholar 

  23. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  24. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X.S. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  25. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  26. Jain, A. et al. Nature 473, 484–488 (2011).

    Article  CAS  Google Scholar 

  27. Yeom, K.H. et al. EMBO Rep. 12, 690–696 (2011).

    Article  CAS  Google Scholar 

  28. Ulbrich, M.H. & Isacoff, E.Y. Nat. Methods 4, 319–321 (2007).

    Article  CAS  Google Scholar 

  29. Kim, S. et al. Nat. Methods 8, 242–245 (2011).

    Article  CAS  Google Scholar 

  30. Wang, Q. & Moerner, W.E. Nat. Methods 11, 555–558 (2014).

    Article  CAS  Google Scholar 

  31. Acuna, G.P. et al. Science 338, 506–510 (2012).

    Article  CAS  Google Scholar 

  32. McKinney, S.A., Joo, C. & Ha, T. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  Google Scholar 

  33. Manrao, E.A. et al. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grants from the US National Science Foundation (PHY 1430124) and US National Institutes of Health (GM065367) supported T.H.'s single-molecule methods development efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekjip Ha.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, T. Single-molecule methods leap ahead. Nat Methods 11, 1015–1018 (2014). https://doi.org/10.1038/nmeth.3107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing