Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A critique of methods for temperature imaging in single cells

We argue that standard thermodynamic considerations and scaling laws show that a single cell cannot substantially raise its temperature by endogenous thermogenesis. This statement seriously questions the interpretations of recent work reporting temperature heterogeneities measured in single living cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temperature mapping in living cells.

References

  1. 1

    Kortmann, J. & Narberhaus, F. Nat. Rev. Microbiol. 10, 255–265 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Knight, M.R. & Knight, H. New Phytol. 195, 737–751 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Zohar, O. et al. Biophys. J. 74, 82–89 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Zeeb, V., Suzuki, M. & Ishiwata, S. Neurosci. Methods 139, 69–77 (2004).

    Article  Google Scholar 

  5. 5

    Suzuki, M., Tseeb, V., Oyama, K. & Ishiwatwa, S. Biophys. J. 92, L46–L48 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Gota, C., Okabe, K., Funatsu, T., Harada, Y. & Uchiyama, S. J. Am. Chem. Soc. 131, 2766–2767 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Martinez Maestro, L. et al. Nano Lett. 10, 5109–5115 (2010).

    Article  Google Scholar 

  8. 8

    Vetrone, F. et al. ACS Nano 4, 3254–3258 (2010).

    CAS  Article  Google Scholar 

  9. 9

    McCabe, K.M., Lacherndo, E.J., Albino-Flores, I., Sheehan, E. & Hernandez, M. Appl. Environ. Microbiol. 77, 2863–2868 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Yang, J., Yang, H. & Lin, L. ACS Nano 5, 5067–5071 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Wang, C. et al. Cell Res. 21, 1517–1519 (2011).

    Article  Google Scholar 

  12. 12

    Okabe, K. et al. Nat. Commun. 3, 705 (2012).

    Article  Google Scholar 

  13. 13

    Donner, J., Thompson, S.A., Kreuzer, M.P., Baffou, G. & Quidant, R. Nano Lett. 12, 2107–2111 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Kucsko, G. et al. Nature 500, 54–58 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Shang, L., Stockmar, F., Azadfar, N. & Nienhaus, G.U. Angew. Chem. Int. Ed. 52, 11154–11157 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Tsuji, T., Yoshida, S., Yoshida, A. & Uchiyama, S. Anal. Chem. 85, 9815–9823 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Kiyonaka, S. et al. Nat. Methods 10, 1232–1238 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Takei, Y. et al. ACS Nano 8, 198–206 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Yang, L. et al. Mikrochim. Acta 181, 743–749 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Lowell, B.B. Nature 404, 652–660 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Loesberg, C., van Miltenburg, J.C. & van Wijk, R.J. Therm. Biol. 7, 209–213 (1982).

    Article  Google Scholar 

  22. 22

    Johnson, M.D. et al. Proc. Natl. Acad. Sci. USA 106, 6696–6699 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Zamorano, F., van de Wouwer, A. & Bastin, G.J. Biotech. 150, 497–508 (2010).

    CAS  Google Scholar 

  24. 24

    Ahn, W.S. & Antoniewicz, M.R. Metab. Eng. 13, 598–609 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Ponomarev, V.V. & Migarskaya, L.B. J. Phys. Chem. 34, 1182–1183 (1960).

    Google Scholar 

  26. 26

    Inomata, N., Toda, M., Sato, M., Ishijima, A. & Ono, T. Appl. Phys. Lett. 100, 154104 (2012).

    Article  Google Scholar 

  27. 27

    Behjousiar, A., Kontoravdi, C. & Polizzi, K.M. PLoS ONE 7, e34512 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Baffou, G. & Rigneault, H. Phys. Rev. B 84, 035415 (2011).

    Article  Google Scholar 

  29. 29

    Nakano, T., Kikugawa, G. & Ohara, T. J. Chem. Phys. 133, 154705 (2010).

    Article  Google Scholar 

  30. 30

    Baffou, G. et al. ACS Nano 7, 6478–6488 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Bianconi, E. et al. Ann. Hum. Biol. 40, 463–471 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University A*Midex (ANR-2011-IDEX-0001-02) and Agence Nationale de la Recherche (ANR) grants Tkinet (ANR-2011-BSV5-019-05), France Bio Imaging (ANR-2010-INSB-04-01) and France Life Imaging (ANR-2011-INSB-0006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guillaume Baffou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baffou, G., Rigneault, H., Marguet, D. et al. A critique of methods for temperature imaging in single cells. Nat Methods 11, 899–901 (2014). https://doi.org/10.1038/nmeth.3073

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing