Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CRISPR transcriptional repression devices and layered circuits in mammalian cells


A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and experimental analysis in human cells of CRISPR repression devices and circuits based on the RNA Pol III U6 promoter.
Figure 2: Design and experimental analysis in human cells of CRISPR repression devices and circuits based on RNA Pol II promoters.


  1. E. Andrianantoandro, S. Basu, D. K. Karig & Weiss, R. Mol. Systems Biol. 2, 0028 (2006).

    Article  Google Scholar 

  2. Ruder, W.C., Lu, T. & Collins, J.J. Science 333, 1248–1252 (2011).

    CAS  Article  Google Scholar 

  3. Slusarczyk, A.L., Lin, A. & Weiss, R. Nat. Rev. Genet. 13, 406–420 (2012).

    CAS  Article  Google Scholar 

  4. Bird, J. Engineering Mathematics 532 (Elsevier Science, 2007).

    Book  Google Scholar 

  5. Peirce, C.S. Collected Papers of Charles Sanders Peirce vol. 4, 12–20 (Harvard University Press, 1933).

    Google Scholar 

  6. Farzadfard, F., Perli, S.D. & Lu, T.K. ACS Synth. Biol. 2, 604–613 (2013).

    CAS  Article  Google Scholar 

  7. Khalil, A.S. et al. Cell 150, 647–658 (2012).

    CAS  Article  Google Scholar 

  8. Garg, A. et al. Nucleic Acids Res. 40, 7584–7595 (2012).

    CAS  Article  Google Scholar 

  9. Kramer, B.P., Fischer, C. & Fussenegger, M. Biotechnol. Bioeng. 87, 478–484 (2004).

    CAS  Article  Google Scholar 

  10. Stanton, B.C. et al. Nat. Chem. Biol. 10, 99–105 (2014).

    CAS  Article  Google Scholar 

  11. Fu, Y. et al. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  Article  Google Scholar 

  12. Mali, P. et al. Science 339, 823–826 (2013).

    CAS  Article  Google Scholar 

  13. Qi, L.S. et al. Cell 152, 1173–1183 (2013).

    CAS  Article  Google Scholar 

  14. Nielsen, A.A., Segall-Shapiro, T.H. & Voigt, C.A. Curr. Opin. Chem. Biol. 17, 878–892 (2013).

    CAS  Article  Google Scholar 

  15. Henriksen, J.R. et al. Nucleic Acids Res. 35, e67 (2007).

    Article  Google Scholar 

  16. Ko, J.K. et al., FASEB J. 25, 2638–2649 (2011).

    CAS  Article  Google Scholar 

  17. Xia, H. et al. Nat. Biotechnol. 20, 1006–1010 (2002).

    CAS  Article  Google Scholar 

  18. Giering, J.C., Grimm, D., Storm, T.A. & Kay, M.A. Mol. Ther. 16, 1630–1636 (2008).

    CAS  Article  Google Scholar 

  19. Lin, S.L. et al. Biochem. Biophys. Res. Commun. 310, 754–760 (2003).

    CAS  Article  Google Scholar 

  20. Cardinale, S. & Arkin, A.P. Biotechnol. J. 7, 856–866 (2012).

    CAS  Article  Google Scholar 

  21. Gyorgy, A. & Del Vecchio, D. PLoS Comput. Biol. doi:10.1371/journal.pcbi.1003486 (13 March 2014).

  22. Dennis, P.P., Ehrenberg, M. & Bremer, H. Microbiol. Mol. Biol. Rev. 68, 639–668 (2004).

    CAS  Article  Google Scholar 

  23. Klumpp, S. & Hwa, T. Proc. Natl. Acad. Sci. USA 105, 20245–20250 (2008).

    CAS  Article  Google Scholar 

  24. Esvelt, K.M. et al. Nat. Methods 10, 1116–1121 (2013).

    CAS  Article  Google Scholar 

Download references


This work was supported by US National Institutes of Health grants 5R01CA155320-04 and P50 GM098792. We thank L. Wrobleska and P. Guye (Massachusetts Institute of Technology) for providing the initial intronic miRNA–based plasmid and the primary Cas9 construct, and for helpful discussions, and M. Graziano (Massachusetts Institute of Technology) for providing us the HEK293 cell lines that constitutively express rtTA3. J.H. was partially supported by the Intelligent Synthetic Biology Center of Global Frontier Project (2013M3A6A8073557) funded by the Ministry of Science, Information and Communication Technology and Future Planning of Korea.

Author information

Authors and Affiliations



R.W. and S.K. conceived the idea. S.K., R.W., M.R.E. and J.B. designed experiments. S.K. performed the majority of experiments. M.R.E. and R.N.H. helped with flow cytometry and transfections. Y.L. and Z.X. built initial versions of CRP-a and CRP-b promoters. J.H. helped with DNA constructions. J.B. developed and applied computational analysis techniques. J.B. and S.K. performed the flow cytometry and statistical analysis. S.K. wrote the manuscript. R.W., J.B. and M.R.E. edited the manuscript.

Corresponding author

Correspondence to Ron Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Discussion and Supplementary Note (PDF 31793 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiani, S., Beal, J., Ebrahimkhani, M. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods 11, 723–726 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing