Abstract
Cryo-electron tomography (CET) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated cryo-PALM (photoactivated localization microscopy)-CET method for localizing objects within cryo-tomograms to beyond the diffraction limit of the light microscope. Using cryo-PALM-CET, we identified multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Integrated multimodality microscope for accurate and efficient target-guided cryo-lamellae preparation
Nature Methods Open Access 16 January 2023
-
Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection
Nature Communications Open Access 27 May 2022
-
Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins
Scientific Reports Open Access 04 February 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Gan, L. & Jensen, G.J. Q. Rev. Biophys. 45, 27–56 (2012).
Nickell, S., Kofler, C., Leis, A.P. & Baumeister, W. Nat. Rev. Mol. Cell Biol. 7, 225–230 (2006).
Briegel, A. et al. in Methods in Enzymology Vol. 481 (ed. Jensen, G.J.) Ch. 13, 317–341 (Academic Press, 2010).
Plitzko, J.M., Rigort, A. & Leis, A. Curr. Opin. Biotechnol. 20, 83–89 (2009).
Schlimpert, S. et al. Cell 151, 1270–1282 (2012).
Patla, I. et al. Nat. Cell Biol. 12, 909–915 (2010).
Pilhofer, M., Ladinsky, M.S., McDowall, A.W. & Jensen, G.J. in Methods Cell Biol. Vol. 96 (ed. Müller-Reichert, T.) Ch. 2, 21–45 (Academic Press, 2010).
Pilhofer, M. et al. Environ. Microbiol. 16, 417–429 (2014).
Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).
Betzig, E. et al. Science 313, 1642–1645 (2006).
Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Biophys. J. 91, 4258–4272 (2006).
Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R. & Nicastro, D. J. Microsc. 227, 98–109 (2007).
Landgraf, D., Okumus, B., Chien, P., Baker, T.A. & Paulsson, J. Nat. Methods 9, 480–482 (2012).
Dubochet, J. & McDowall, A.W. J. Microsc. 124, 3–4 (1981).
Russell, A.B. et al. Nature 475, 343–347 (2011).
Pukatzki, S. et al. Proc. Natl. Acad. Sci. USA 103, 1528–1533 (2006).
Basler, M., Pilhofer, M., Henderson, G.P., Jensen, G.J. & Mekalanos, J.J. Nature 483, 182–186 (2012).
Konovalova, A., Petters, T. & Søgaard-Andersen, L. FEMS Microbiol. Rev. 34, 89–106 (2010).
Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H. & Mogk, A. EMBO J. 28, 315–325 (2009).
Basler, M. & Mekalanos, J.J. Science 337, 815 (2012).
Søgaard-Andersen, L., Slack, F.J., Kimsey, H. & Kaiser, D. Genes Dev. 10, 740–754 (1996).
Kaiser, D. Proc. Natl. Acad. Sci. USA 76, 5952–5956 (1979).
Shi, X. et al. J. Bacteriol. 190, 613–624 (2008).
Shi, W. & Zusman, D.R. Proc. Natl. Acad. Sci. USA 90, 3378–3382 (1993).
Julien, B., Kaiser, A.D. & Garza, A. Proc. Natl. Acad. Sci. USA 97, 9098–9103 (2000).
Silverman, J.M., Brunet, Y.R., Cascales, E. & Mougous, J.D. Annu. Rev. Microbiol. 66, 453–472 (2012).
Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Nat. Methods 7, 418–419 (2010).
Wolter, S. et al. Nat. Methods 9, 1040–1041 (2012).
Thompson, R.E., Larson, D.R. & Webb, W.W. Biophys. J. 82, 2775–2783 (2002).
Zheng, S.Q. et al. J. Struct. Biol. 157, 138–147 (2007).
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. J. Struct. Biol. 116, 71–76 (1996).
Acknowledgements
We thank A.W. McDowall, C. Oikonomou, A. Konovalova, L. Cai and T. Zhiyentayev for assistance and discussions. This work was supported in part by US National Institutes of Health grant R01 GM094800B to G.J.J., the Howard Hughes Medical Institute and the Max Planck Society.
Author information
Authors and Affiliations
Contributions
Y.-W.C. and G.J.J. conceived the cryo-PALM idea. Y.-W.C. and S.C. configured the optical system. Y.-W.C., S.C. and E.I.T. tested fluorophores for photoactivatability at low temperatures. Y.-W.C. improved stability of cryo-FLM stage, prepared samples, overcame laser-induced ice crystallization on the sample, acquired and analyzed cryo-PALM data and conducted correlated cryo-PALM-CET. A.T.-L., S.L. and L.S.-A. generated M. xanthus strains and conducted functional analyses. Y.-W.C. and G.J.J. wrote the paper with input from all authors.
Corresponding author
Ethics declarations
Competing interests
Y.-W.C., S.C., E.I.T. and G.J.J. are affiliated with the California Institute of Technology, which has filed a patent application based on this work.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 10761 kb)
Demonstration of correlated cryo-PALM-CET
Identification of T6SS structures in extended and contracted conformations in M. xanthus by correlated cryo-PALM-CET (MOV 26103 kb)
Demonstration of correlated cryo-PALM-CET
Identification of early assembly stage of T6SS structure in M. xanthus by correlated cryo-PALM-CET (MOV 25845 kb)
Rights and permissions
About this article
Cite this article
Chang, YW., Chen, S., Tocheva, E. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11, 737–739 (2014). https://doi.org/10.1038/nmeth.2961
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.2961
This article is cited by
-
Integrated multimodality microscope for accurate and efficient target-guided cryo-lamellae preparation
Nature Methods (2023)
-
Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection
Nature Communications (2022)
-
Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging
Biophysical Reviews (2021)
-
mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM
Nature Methods (2020)
-
Super-resolution microscopy demystified
Nature Cell Biology (2019)