Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas

An Erratum to this article was published on 27 June 2014

This article has been updated

Abstract

Despite its many favorable properties as a sample support for biological electron microscopy, graphene is not widely used because its hydrophobicity precludes reliable protein deposition. We describe a method to modify graphene with a low-energy hydrogen plasma, which reduces hydrophobicity without degrading the graphene lattice. Use of plasma-treated graphene enables better control of protein distribution in ice for electron cryo-microscopy and improves image quality by reducing radiation-induced sample motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Low-energy hydrogen-plasma treatment renders graphene hydrophilic and removes contamination.
Figure 2: Dose-dependent adsorption of proteins on hydrogen plasma–treated graphene.
Figure 3: Reduced motion of proteins on graphene substrates, as shown by speed plots.

Accession codes

Accessions

Electron Microscopy Data Bank

Protein Data Bank

Change history

  • 10 June 2014

    In the version of this article initially published, the arrow in Figure 1b pointing to the 0–110 reflection was in the incorrect location. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Grigorieff, N. & Harrison, S.C. Curr. Opin. Struct. Biol. 21, 265–273 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Bai, X.-C., Fernandez, I.S., McMullan, G. & Scheres, S.H. Elife 2, e00461 (2013).

    Article  Google Scholar 

  3. 3

    Dubochet, J. et al. Q. Rev. Biophys. 21, 129–228 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Robertson, J. Adv. Phys. 35, 317–374 (1986).

    CAS  Article  Google Scholar 

  5. 5

    Miyazawa, A. et al. J. Mol. Biol. 288, 765–786 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Brilot, A.F. et al. J. Struct. Biol. 177, 630–637 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Henderson, R. & McMullan, G. Microscopy 62, 43–50 (2013).

    Article  Google Scholar 

  8. 8

    Geim, A.K. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Lee, C., Wei, X., Kysar, J.W. & Hone, J. Science 321, 385–388 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Russo, C.J. A structural imaging study of single DNA molecules on carbon nanotubes. PhD thesis, Harvard Univ. (2010).

  11. 11

    Pantelic, R.S., Meyer, J.C., Kaiser, U., Baumeister, W. & Plitzko, J.M. J. Struct. Biol. 170, 152–156 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Pantelic, R.S. et al. J. Struct. Biol. 174, 234–238 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Sader, K. et al. J. Struct. Biol. 183, 531–536 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Gómez-Navarro, C. et al. Nano Lett. 7, 3499–3503 (2007).

    Article  Google Scholar 

  15. 15

    Elias, D.C. et al. Science 323, 610–613 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Méndez, I. et al. J. Phys. Chem. A 110, 6060–6066 (2006).

    Article  Google Scholar 

  17. 17

    Russo, C.J. & Golovchenko, J.A. Proc. Natl. Acad. Sci. USA 109, 5953–5957 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Israelachvili, J. & Pashley, R. Nature 300, 341–342 (1982).

    CAS  Article  Google Scholar 

  19. 19

    Curtis, G.H. & Ferrier, R.P. J. Phys. D Appl. Phys. 2, 1035–1040 (1969).

    Article  Google Scholar 

  20. 20

    Downing, K.H., McCartney, M.R. & Glaeser, R.M. Microsc. Microanal. 10, 783–789 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Reina, A. et al. Nano Lett. 9, 30–35 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Li, X. et al. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Lieberman, M.A. & Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing 2nd edn. (Wiley, 2005).

  24. 24

    Taherian, F., Marcon, V., van der Vegt, N.F.A. & Leroy, F. Langmuir 29, 1457–1465 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Dubochet, J., Groom, M. & Mueller-Neuteboom, S. Adv. Opt. Electron Microsc. 8, 107–135 (1982).

    CAS  Google Scholar 

  26. 26

    Regan, W. et al. Appl. Phys. Lett. 96, 113102 (2010).

    Article  Google Scholar 

  27. 27

    Selmer, M. et al. Science 313, 1935–1942 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Wasilewski, S., Karelina, D., Berriman, J.A. & Rosenthal, P.B. J. Struct. Biol. 180, 243–248 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Tang, G. et al. J. Struct. Biol. 157, 38–46 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Scheres, S.H.W. J. Struct. Biol. 180, 519–530 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Mindell, J.A. & Grigorieff, N. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  32. 32

    Voorhees, R.M., Weixlbaumer, A., Loakes, D., Kelley, A.C. & Ramakrishnan, V. Nat. Struct. Mol. Biol. 16, 528–533 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Pettersen, E.F. et al. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Armache, J.-P. et al. Proc. Natl. Acad. Sci. USA 107, 19754–19759 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Scheres, S.H.W. & Chen, S. Nat. Methods 9, 853–854 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Rosenthal, P.B. & Henderson, R. J. Mol. Biol. 333, 721–745 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J.A. Golovchenko for the use of a chemical vapor–deposition instrument at Harvard for graphene synthesis during the initial phases of this work; S. Scotcher for fabrication of custom sample holders and copper punch machines; I.S. Fernandez, A. Kelley and V. Ramakrishnan of the Medical Research Council (MRC) Laboratory of Molecular Biology for the gift of ribosomes; J. Grimmett, T. Darling, G. McMullan and S. Chen for technical assistance; and E. Rajendra, R.A. Crowther, D. Neuhaus, X.C. Bai, S. Scheres, N. Unwin, A.R. Faruqi and R. Henderson for helpful discussions and comments. This work was supported by the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 261151 to L.A.P., an MRC (UK) Centenary award to C.J.R. and MRC (UK) grant MC_U105192715 (L.A.P.).

Author information

Affiliations

Authors

Contributions

C.J.R. designed and performed the experiments and analyzed the data. C.J.R. and L.A.P. designed experiments, planned the project, interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Lori A Passmore.

Ethics declarations

Competing interests

C.J.R. and L.A.P. are inventors on a patent application related to technology described in this manuscript (US 61/865,359).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Notes 1 and 2 (PDF 7263 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Russo, C., Passmore, L. Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat Methods 11, 649–652 (2014). https://doi.org/10.1038/nmeth.2931

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing