Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Quantifying Drosophila food intake: comparative analysis of current methodology

Abstract

Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the capillary feeder (CAFE), food labeling with a radioactive tracer or colorimetric dye and observations of proboscis extension (PE). We show that the CAFE and radioisotope labeling provide the most consistent results, have the highest sensitivity and can resolve differences in feeding that dye labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of methods for measuring food intake will greatly advance Drosophila studies of nutrition, behavior and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of feeding assays using a compensatory-feeding paradigm.
Figure 2: Comparison of feeding assays on flies of different genders and mating status.
Figure 3: Feeding measurements using pairs of assays simultaneously.
Figure 4: Performance of Drosophila feeding assays.

Similar content being viewed by others

References

  1. Carvalho, G.B., Kapahi, P. & Benzer, S. Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat. Methods 2, 813–815 (2005).

    Article  CAS  Google Scholar 

  2. Grandison, R.C., Piper, M.D. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).

    Article  CAS  Google Scholar 

  3. Heilbronn, L.K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 78, 361–369 (2003).

    Article  CAS  Google Scholar 

  4. Ja, W.W. et al. Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. Proc. Natl. Acad. Sci. USA 106, 18633–18637 (2009).

    Article  CAS  Google Scholar 

  5. Lee, K.P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. USA 105, 2498–2503 (2008).

    Article  CAS  Google Scholar 

  6. Min, K.J. & Tatar, M. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech. Ageing Dev. 127, 643–646 (2006).

    Article  CAS  Google Scholar 

  7. Broughton, S.J. et al. DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9, 336–346 (2010).

    Article  CAS  Google Scholar 

  8. Driver, C.J.I., Wallis, R., Cosopodiotis, G. & Ettershank, G. Is a fat metabolite the major diet dependent accelerator of aging? Exp. Gerontol. 21, 497–507 (1986).

    Article  CAS  Google Scholar 

  9. Mair, W., Piper, M.D. & Partridge, L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, e223 (2005).

    Article  Google Scholar 

  10. Edgecomb, R.S., Harth, C.E. & Schneiderman, A.M. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J. Exp. Biol. 197, 215–235 (1994).

    CAS  PubMed  Google Scholar 

  11. Wood, J.G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    Article  CAS  Google Scholar 

  12. Ayaki, T., Oshima, K. & Yoshikawa, I. Linear relationship between lethal mutation yield and intake of ethyl methanesulfonate in Drosophila melanogaster. Environ. Mutagen. 7, 147–153 (1985).

    Article  CAS  Google Scholar 

  13. Brummel, T., Ching, A., Seroude, L., Simon, A.F. & Benzer, S. Drosophila lifespan enhancement by exogenous bacteria. Proc. Natl. Acad. Sci. USA 101, 12974–12979 (2004).

    Article  CAS  Google Scholar 

  14. Carvalho, G.B., Kapahi, P., Anderson, D.J. & Benzer, S. Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila. Curr. Biol. 16, 692–696 (2006).

    Article  CAS  Google Scholar 

  15. Geer, B.W., Olander, R.M. & Sharp, P.L. Quantification of dietary choline utilization in adult Drosophila melanogaster by radioisotope methods. J. Insect Physiol. 16, 33–43 (1970).

    Article  CAS  Google Scholar 

  16. Thompson, E.D. & Reeder, B.A. Method for selecting exposure levels for the Drosophila sex-linked recessive lethal assay. Environ. Mol. Mutagen. 10, 357–365 (1987).

    Article  CAS  Google Scholar 

  17. Thompson, E.D., Reeder, B.A. & Bruce, R.D. Characterization of a method for quantitating food consumption for mutation assays in Drosophila. Environ. Mol. Mutagen. 18, 14–21 (1991).

    Article  CAS  Google Scholar 

  18. Zeng, C. et al. Gender-specific prandial response to dietary restriction and oxidative stress in Drosophila melanogaster. Fly (Austin) 5, 174–180 (2011).

    Article  CAS  Google Scholar 

  19. Wong, R., Piper, M.D., Blanc, E. & Partridge, L. Pitfalls of measuring feeding rate in the fruit fly Drosophila melanogaster. Nat. Methods 5, 214–215, author reply 215 (2008).

    Article  CAS  Google Scholar 

  20. Ewing, L.S. & Ewing, A.W. Courtship of Drosophila melanogaster in large observation chambers: the influence of female reproductive state. Behaviour 101, 243–252 (1987).

    Article  Google Scholar 

  21. Wong, R., Piper, M.D., Wertheim, B. & Partridge, L. Quantification of food intake in Drosophila. PLoS ONE 4, e6063 (2009).

    Article  Google Scholar 

  22. Ja, W.W. et al. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 104, 8253–8256 (2007).

    Article  CAS  Google Scholar 

  23. Vigne, P. & Frelin, C. Food presentation modifies longevity and the beneficial action of dietary restriction in Drosophila. Exp. Gerontol. 45, 113–118 (2010).

    Article  CAS  Google Scholar 

  24. Catterson, J.H. et al. Dietary modulation of Drosophila sleep-wake behaviour. PLoS ONE 5, e12062 (2010).

    Article  Google Scholar 

  25. Chatterjee, A., Tanoue, S., Houl, J.H. & Hardin, P.E. Regulation of gustatory physiology and appetitive behavior by the Drosophila circadian clock. Curr. Biol. 20, 300–309 (2010).

    Article  CAS  Google Scholar 

  26. Xu, K., Zheng, X. & Sehgal, A. Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab. 8, 289–300 (2008).

    Article  CAS  Google Scholar 

  27. Sellier, M.J., Reeb, P. & Marion-Poll, F. Consumption of bitter alkaloids in Drosophila melanogaster in multiple-choice test conditions. Chem. Senses 36, 323–334 (2011).

    Article  CAS  Google Scholar 

  28. Devineni, A.V. & Heberlein, U. Preferential ethanol consumption in Drosophila models features of addiction. Curr. Biol. 19, 2126–2132 (2009).

    Article  CAS  Google Scholar 

  29. Al-Anzi, B. et al. Obesity-blocking neurons in Drosophila. Neuron 63, 329–341 (2009).

    Article  CAS  Google Scholar 

  30. Fanson, B.G., Yap, S. & Taylor, P.W. Geometry of compensatory feeding and water consumption in Drosophila melanogaster. J. Exp. Biol. 215, 766–773 (2012).

    Article  Google Scholar 

  31. Barnes, A.I., Wigby, S., Boone, J.M., Partridge, L. & Chapman, T. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc. Biol. Sci. 275, 1675–1683 (2008).

    Article  Google Scholar 

  32. Bruce, K.D. et al. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp. Gerontol. 48, 1129–1135 (2013).

    Article  CAS  Google Scholar 

  33. O'Brien, D.M., Min, K.J., Larsen, T. & Tatar, M. Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Curr. Biol. 18, R155–R156 (2008).

    Article  CAS  Google Scholar 

  34. Min, K.J., Hogan, M.F., Tatar, M. & O'Brien, D.M. Resource allocation to reproduction and soma in Drosophila: a stable isotope analysis of carbon from dietary sugar. J. Insect Physiol. 52, 763–770 (2006).

    Article  CAS  Google Scholar 

  35. Sury, M.D., Chen, J.X. & Selbach, M. The SILAC fly allows for accurate protein quantification in vivo. Mol. Cell. Proteomics 9, 2173–2183 (2010).

    Article  CAS  Google Scholar 

  36. Xu, P. et al. Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. J. Proteome Res. 11, 4403–4412 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Piper and L. Partridge (University College London) for the Dahomey fly line and K.D. Bruce, R. Yamada and K.R. Murphy (The Scripps Research Institute) for comments on the manuscript. This work was supported by grants from the US National Institutes of Health (R00AG030493 and R21DK092735), an Ellison Medical Foundation New Scholar in Aging award and a Glenn Foundation for Medical Research Award for Research in Biological Mechanisms of Aging (W.W.J.).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and carried out experiments. S.A.D., G.B.C., A.A., A.M.P., S.H. and W.W.J. also analyzed data and wrote the paper.

Corresponding author

Correspondence to William W Ja.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, S., Carvalho, G., Amador, A. et al. Quantifying Drosophila food intake: comparative analysis of current methodology. Nat Methods 11, 535–540 (2014). https://doi.org/10.1038/nmeth.2899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing