Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A synthetic approach to abiogenesis

Abstract

Synthetic biology seeks to probe fundamental aspects of biological form and function by construction (resynthesis) rather than deconstruction (analysis). Here we discuss how such an approach could be applied to assemble synthetic quasibiological systems able to replicate and evolve, illuminating universal properties of life and the search for its origins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic biological systems of increasing simplicity.
Figure 2: Helpful heterogeneity in an RNA-based protocell.

References

  1. Woese, C. Proc. Natl. Acad. Sci. USA 95, 6854–6859 (1998).

    Article  CAS  Google Scholar 

  2. Davies, P.C. Philos. Trans. A Math. Phys. Eng. Sci. 369, 624–632 (2011).

    Article  CAS  Google Scholar 

  3. Paddon, C.J. et al. Nature 496, 528–532 (2013).

    Article  CAS  Google Scholar 

  4. Leisner, M., Bleris, L., Lohmueller, J., Xie, Z. & Benenson, Y. Nat. Nanotechnol. 5, 666–670 (2010).

    Article  CAS  Google Scholar 

  5. Gibson, D.G. et al. Science 329, 52–56 (2010).

    CAS  Google Scholar 

  6. Greiss, S. & Chin, J.W. J. Am. Chem. Soc. 133, 14196–14199 (2011).

    Article  CAS  Google Scholar 

  7. Prescher, J.A., Dube, D.H. & Bertozzi, C.R. Nature 430, 873–877 (2004).

    Article  CAS  Google Scholar 

  8. Marlière, P. et al. Angew. Chem. Int. Ed. Engl. 50, 7109–7114 (2011).

    Article  Google Scholar 

  9. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J.W. Nature 464, 441–444 (2010).

    Article  CAS  Google Scholar 

  10. Lajoie, M.J. et al. Science 342, 357–360 (2013).

    Article  CAS  Google Scholar 

  11. Hirao, I., Kimoto, M. & Yamashige, R. Acc. Chem. Res. 45, 2055–2065 (2012).

    Article  CAS  Google Scholar 

  12. Rackham, O. & Chin, J.W. Nat. Chem. Biol. 1, 159–166 (2005).

    Article  CAS  Google Scholar 

  13. Noireaux, V., Maeda, Y.T. & Libchaber, A. Proc. Natl. Acad. Sci. USA 108, 3473–3480 (2011).

    Article  CAS  Google Scholar 

  14. Kurihara, K. et al. Nat. Chem. 3, 775–781 (2011).

    Article  CAS  Google Scholar 

  15. Nourian, Z., Roelofsen, W. & Danelon, C. Angew. Chem. Int. Ed. Engl. 51, 3114–3118 (2012).

    Article  CAS  Google Scholar 

  16. Stano, P., D'Aguanno, E., Bolz, J., Fahr, A. & Luisi, P.L. Angew. Chem. Int. Ed. Engl. 52, 13397–13400 (2013).

    Article  CAS  Google Scholar 

  17. Forster, A.C. & Church, G.M. Mol. Syst. Biol. 2, 45 (2006).

    Article  Google Scholar 

  18. Benner, S.A., Ricardo, A. & Carrigan, M.A. Curr. Opin. Chem. Biol. 8, 672–689 (2004).

    Article  CAS  Google Scholar 

  19. Budin, I. & Szostak, J.W. Annu. Rev. Biophys. 39, 245–263 (2010).

    Article  CAS  Google Scholar 

  20. Szostak, J.W., Bartel, D.P. & Luisi, P.L. Nature 409, 387–390 (2001).

    Article  CAS  Google Scholar 

  21. Mercier, R., Kawai, Y. & Errington, J. Cell 152, 997–1007 (2013).

    Article  CAS  Google Scholar 

  22. Lincoln, T.A. & Joyce, G.F. Science 323, 1229–1232 (2009). The first demonstration of autonomous and exponential RNA self-copying.

    Article  CAS  Google Scholar 

  23. Vaidya, N. et al. Nature 491, 72–77 (2012).

    Article  CAS  Google Scholar 

  24. Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E. & Bartel, D.P. Science 292, 1319–1325 (2001). The first demonstration of a general RNA-catalyzed templated replication activity.

    Article  CAS  Google Scholar 

  25. Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Science 332, 209–212 (2011).

    Article  CAS  Google Scholar 

  26. Attwater, J., Wochner, A. & Holliger, P. Nat. Chem. 5, 1011–1018 (2013). An RNA polymerase ribozyme that can synthesize RNAs longer than itself.

    Article  CAS  Google Scholar 

  27. Ninio, J. & Orgel, L.E. J. Mol. Evol. 12, 91–99 (1978).

    Article  CAS  Google Scholar 

  28. Zhang, S., Blain, J.C., Zielinska, D., Gryaznov, S.M. & Szostak, J.W. Proc. Natl. Acad. Sci. USA 110, 17732–17737 (2013).

    Article  CAS  Google Scholar 

  29. Deck, C., Jauker, M. & Richert, C. Nat. Chem. 3, 603–608 (2011).

    Article  CAS  Google Scholar 

  30. Adamala, K. & Szostak, J.W. Science 342, 1098–1100 (2013). Templated RNA synthesis within a protocell facilitated by citrate.

    Article  CAS  Google Scholar 

  31. Szostak, J.W. J. Syst. Chem. 3, 2 (2012).

    Article  CAS  Google Scholar 

  32. Zhu, T.F. & Szostak, J.W. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    Article  CAS  Google Scholar 

  33. Szostak, J.W. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2894–2901 (2011).

    Article  CAS  Google Scholar 

  34. Bowler, F.R. et al. Nat. Chem. 5, 383–389 (2013).

    Article  CAS  Google Scholar 

  35. Engelhart, A.E., Powner, M.W. & Szostak, J.W. Nat. Chem. 5, 390–394 (2013).

    Article  CAS  Google Scholar 

  36. Powner, M.W., Gerland, B. & Sutherland, J.D. Nature 459, 239–242 (2009). A prebiotic synthesis of the pyrimidine ribonucleotides, providing key building blocks for the RNA world.

    Article  CAS  Google Scholar 

  37. Mansy, S.S. & Szostak, J.W. Proc. Natl. Acad. Sci. USA 105, 13351–13355 (2008).

    Article  CAS  Google Scholar 

  38. Moretti, J.E. & Müller, U.F. Nucleic Acids Res. 10.1093/nar/gkt1405 (21 January 2014).

  39. Ichihashi, N. et al. Nat. Commun. 4, 2494 (2013).

    Article  Google Scholar 

  40. Baaske, P. et al. Proc. Natl. Acad. Sci. USA 104, 9346–9351 (2007).

    Article  CAS  Google Scholar 

  41. Attwater, J., Wochner, A., Pinheiro, V.B., Coulson, A. & Holliger, P. Nat. Commun. 1, 76 (2010).

    Article  Google Scholar 

  42. Koga, S., Williams, D.S., Perriman, A.W. & Mann, S. Nat. Chem. 3, 720–724 (2011).

    Article  CAS  Google Scholar 

  43. Kim, G.H., Klotchkova, T.A. & Kang, Y.M. J. Cell Sci. 114, 2009–2014 (2001).

    CAS  PubMed  Google Scholar 

  44. Rasmussen, S. et al. Science 303, 963–965 (2004).

    Article  CAS  Google Scholar 

  45. Cooper, G.J. et al. Angew. Chem. Int. Ed. Engl. 50, 10373–10376 (2011).

    Article  CAS  Google Scholar 

  46. Pinheiro, V.B. et al. Science 336, 341–344 (2012).

    Article  CAS  Google Scholar 

  47. Szathmáry, E. Nat. Rev. Genet. 4, 995–1001 (2003).

    Article  Google Scholar 

  48. Attwater, J. et al. Chem. Sci. 4, 2804–2814 (2013).

    Article  CAS  Google Scholar 

  49. Ameta, S., Winz, M.L., Previti, C. & Jäschke, A. Nucleic Acids Res. 42, 1303–1310 (2014).

    Article  CAS  Google Scholar 

  50. Jiménez, J.I., Xulvi-Brunet, R., Campbell, G.W., Turk-MacLeod, R. & Chen, I.A. Proc. Natl. Acad. Sci. USA 110, 14984–14989 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Homerton College, Cambridge, Junior Research Fellowship (J.A.) and by the Medical Research Council (programme number U105178804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Holliger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attwater, J., Holliger, P. A synthetic approach to abiogenesis. Nat Methods 11, 495–498 (2014). https://doi.org/10.1038/nmeth.2893

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing