Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Function-based identification of mammalian enhancers using site-specific integration

Abstract

The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe site-specific integration fluorescence-activated cell sorting followed by sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Targeted single-copy genomic integration into pluripotent cells, reporter assays and flow cytometry are coupled with high-throughput DNA sequencing to enable parallel screening of large numbers of DNA sequences. By functionally interrogating >500 kilobases (kb) of mouse and human sequence in mouse embryonic stem cells for enhancer activity we identified enhancers at pluripotency loci including NANOG. In in vitro–differentiated cardiomyocytes and neural progenitor cells, we identified cardiac enhancers and neuronal enhancers, respectively. SIF-seq is a powerful and flexible method for de novo functional identification of mammalian enhancers in a potentially wide variety of cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of SIF-seq.
Figure 2: SIF-seq identifies mouse and human ES cell enhancers.
Figure 3: Validating mouse ES cell enhancers identified by SIF-seq.
Figure 4: SIF-seq accurately identifies cardiac enhancers.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    CAS  PubMed  Google Scholar 

  2. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  6. ENCODE Project Consortium. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  7. Kleinjan, D.A. & Lettice, L.A. Long-Range Gene Control and Genetic Disease. Adv. Genet. 61, 339–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X., Cowper-Sal Lari, R., Bailey, S.D., Moore, J.H. & Lupien, M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 22, 1437–1446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M. & Shiroishi, T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132, 797–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Yanagisawa, H., Clouthier, D.E., Richardson, J.A., Charité, J. & Olson, E.N. Targeted deletion of a branchial arch-specific enhancer reveals a role of dHAND in craniofacial development. Development 130, 1069–1078 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Shim, S., Kwan, K.Y., Li, M., Lefebvre, V. & Sestan, N. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Danielian, P.S., Echelard, Y., Vassileva, G. & McMahon, A.P. A 5.5-kb enhancer is both necessary and sufficient for regulation of Wnt-1 transcription in vivo. Dev. Biol. 192, 300–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Attanasio, C. et al. Fine tuning of craniofacial morphology by distant-acting enhancers. Science 342, 1241006 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cotney, J. et al. Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb. Genome Res. 22, 1069–1080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwasnieski, J.C., Mogno, I., Myers, C.A., Corbo, J.C. & Cohen, B.A. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc. Natl. Acad. Sci. USA 109, 19498–19503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bronson, S.K. et al. Single-copy transgenic mice with chosen-site integration. Proc. Natl. Acad. Sci. USA 93, 9067–9072 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J. et al. Vascular bed-specific regulation of the von Willebrand factor promoter in the heart and skeletal muscle. Blood 117, 342–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki, A. et al. Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 10294–10299 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Y. et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 100, 11484–11489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105, 707–714 (1989).

    CAS  PubMed  Google Scholar 

  27. Pennacchio, L.A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Visel, A. et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat. Genet. 40, 158–160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ward, M.C. et al. Latent regulatory potential of human-specific repetitive elements. Mol. Cell 49, 262–272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arnold, C.D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gisselbrecht, S.S. et al. Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat. Methods 10, 774–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nam, J., Dong, P., Tarpine, R., Istrail, S. & Davidson, E.H. Functional cis-regulatory genomics for systems biology. Proc. Natl. Acad. Sci. USA 107, 3930–3935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tuan, D.Y., Solomon, W.B., London, I.M. & Lee, D.P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human 'beta-like globin' genes. Proc. Natl. Acad. Sci. USA 86, 2554–2558 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fraser, P., Hurst, J., Collis, P. & Grosveld, F. DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. Nucleic Acids Res. 18, 3503–3508 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hug, B.A., Moon, A.M. & Ley, T.J. Structure and function of the murine beta-globin locus control region 5′ HS-3. Nucleic Acids Res. 20, 5771–5778 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skarnes, W.C. Gene trapping methods for the identification and functional analysis of cell surface proteins in mice. Methods Enzymol. 328, 592–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kattman, S.J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Wamstad, J.A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Gaspard, N. et al. Generation of cortical neurons from mouse embryonic stem cells. Nat. Protoc. 4, 1454–1463 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25, 402–408 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Bronson (Pennsylvania State University) for the pSKB1 plasmid, A. Miyawaki (RIKEN) for the Venus gene, and R. Malmstrom, K. Singh and Z. Zhao for technical help. A.V. and L.A.P. were supported by US National Institute of Health (NIH) grants U01DE020060, R01HG003988 and U54HG006997. D.E.D. was supported by NIH grant 5T32HL098057 (to Children's Hospital Oakland Research Institute). B.G.B. was supported by NIH Bench to Bassinet Program (U01HL098179). A.K. and B.G. were supported by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research, the UK Biotechnology and Biological Sciences Research Council, and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute. Research was conducted at the E.O. Lawrence Berkeley National Laboratory and performed under US Department of Energy Contract DE-AC02-05CH11231, University of California.

Author information

Authors and Affiliations

Authors

Contributions

D.E.D., Y.Z., J.N.W., J.A.A., V.A., I.P.-F. and A.K. carried out experimental studies. D.E.D. and A.S.N. performed data analysis. D.E.D., B.G., B.G.B., A.V. and L.A.P. planned experiments. D.E.D., A.V. and L.A.P. wrote the manuscript.

Corresponding authors

Correspondence to Axel Visel or Len A Pennacchio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, and Supplementary Note (PDF 1778 kb)

Supplementary Software

Software. (ZIP 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickel, D., Zhu, Y., Nord, A. et al. Function-based identification of mammalian enhancers using site-specific integration. Nat Methods 11, 566–571 (2014). https://doi.org/10.1038/nmeth.2886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2886

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research