Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells

Abstract

Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a high-throughput functional assay for directly identifying active promoter and enhancer elements called FIREWACh (Functional Identification of Regulatory Elements Within Accessible Chromatin), which we used to simultaneously assess over 80,000 DNA fragments derived from nucleosome-free regions within the chromatin of embryonic stem cells (ESCs) and identify 6,364 active regulatory elements. Many of these represent newly discovered ESC-specific enhancers, showing enriched binding-site motifs for ESC-specific transcription factors including SOX2, POU5F1 (OCT4) and KLF4. The application of FIREWACh to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of FIREWACh.
Figure 2: NFR-derived DNAs correspond to accessible chromatin regions located throughout the genome.
Figure 3: NFR-GFP-LVs detect active CRMs.
Figure 4: FIREWACh elements are associated with expressed genes and correlate with chromatin marks of active promoters and enhancers.
Figure 5: Distal FIREWACh elements correlate with previously predicted ESC enhancers and act as cell-specific enhancers that can be used for TF prediction.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Landolin, J.M. et al. Sequence features that drive human promoter function and tissue specificity. Genome Res. 20, 890–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hardison, R.C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13, 469–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akhtar, W. et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154, 914–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Mogno, I., Kwasnieski, J.C. & Cohen, B.A. Massively parallel synthetic promoter assays reveal the in vivo effects of binding site variants. Genome Res. 23, 1908–1915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yaragatti, M., Basilico, C. & Dailey, L. Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions. Genome Res. 18, 930–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murtha, M., Wang, Y., Basilico, C. & Dailey, L. Isolation and analysis of DNA derived from nucleosome-free regions. Methods Mol. Biol. 977, 35–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Cockerill, P.N. Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J. 278, 2182–2210 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Voigt, P., Tee, W.-W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, C.-Y., Morris, Q. & Mitchell, J.A. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features. BMC Genomics 13, 152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Visel, A., Minovitsky, S., Dubchak, I. & Pennachio, L.A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Bailey, T.L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pennacchio, L.A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Nam, J., Dong, P., Tarpine, R., Istrail, S. & Davidson, E.H. Functional cis-regulatory genomics for systems biology. Proc. Natl. Acad. Sci. USA 107, 3930–3935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arnold, C.D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Gisselbrecht, S.S. et al. Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat. Methods 10, 774–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herold, M., Bartkuhn, M. & Renkawitz, R. CTCF: insights into insulator function during development. Development 139, 1045–1057 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Charrier, S. et al. Quantification of lentiviral vector copy numbers in individual hematopoietic colony-forming cells shows vector dose-dependent effects on the frequency and level of transduction. Gene Ther. 18, 479–487 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Caporaso, J.G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kruskal, W.H. & Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    Article  Google Scholar 

  38. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mathelier, A. et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Heguy, E. Mazzoni, M. Stadtfeld, D. Smith and U. Basu-Roy for their critical reading of this manuscript. We also thank A. Mansukhani and members of the Skok laboratory for helpful discussions, and the Genome Technology Center and Flow Cytometry and Cell Sorting Center at New York University Langone Medical Center for technical assistance. This work was supported by an Empire State Stem Cell Board grant through the New York State Department of Health (NYSTEM Contract #CO24322) to L.D. and a postdoctoral fellowship from US National Institutes of Health NCI institutional training grant 1T32CA160002 awarded to M.M.

Author information

Authors and Affiliations

Authors

Contributions

L.D. conceived of and designed the study; Y.W. constructed the NFR-GFP-LV reporter libraries and viral stocks; M.M. developed the FIREWACh technology and generated all cell lines, FACS sorting and PCR rescue and analysis of FIREWACh elements; Z.T. performed all processing and genomic alignment of Illumina data; S.B. generated the in silico DNA data sets; Z.T.-K. and X.X. performed luciferase assays; C.B. contributed to critical discussions; X.C., F.S., Y.K. and R.B. provided bioinformatic support and analyses; and M.M. and L.D. wrote the manuscript with additional contributions from X.C. and R.B.

Corresponding author

Correspondence to Lisa Dailey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Note (PDF 1871 kb)

Supplementary Table 1

Genomic Coordinates for in silico DNAs, input NFR Library DNAs, FIREWACh Elements (XLSX 10 kb)

Supplementary Table 2

Sequencing Statistics (XLSX 4111 kb)

Supplementary Table 3

Luciferase Validated Elements (XLSX 32 kb)

Supplementary Table 4

Primer Sequences (XLSX 12 kb)

Supplementary Table 5

Datasets Used (XLSX 48 kb)

Supplementary Table 6

GREAT Analysis (XLSX 10 kb)

Supplementary Table 7

Full Motif Analysis (XLSX 2730 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murtha, M., Tokcaer-Keskin, Z., Tang, Z. et al. FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nat Methods 11, 559–565 (2014). https://doi.org/10.1038/nmeth.2885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing