Brief Communication | Published:

Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering

Nature Methods volume 11, pages 410412 (2014) | Download Citation

Abstract

Sensitive and specific visualization of small biomolecules in living systems is highly challenging. We report stimulated Raman-scattering imaging of alkyne tags as a general strategy for studying a broad spectrum of small biomolecules in live cells and animals. We demonstrate this technique by tracking alkyne-bearing drugs in mouse tissues and visualizing de novo synthesis of DNA, RNA, proteins, phospholipids and triglycerides through metabolic incorporation of alkyne-tagged small precursors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

  2. 2.

    & Raman, Infrared, and Near-infrared Chemical Imaging (Wiley, 2011).

  3. 3.

    & Coherent Raman Scattering Microscopy (CRC Press, 2012).

  4. 4.

    & Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).

  5. 5.

    & Nat. Chem. Biol. 1, 13–21 (2005).

  6. 6.

    & Nat. Chem. Biol. 9, 475–484 (2013).

  7. 7.

    & Proc. Natl. Acad. Sci. USA 105, 2415–2420 (2008).

  8. 8.

    & Proc. Natl. Acad. Sci. USA 105, 15779–15784 (2008).

  9. 9.

    et al. Angew. Chem. Int. Ed. 45, 7364–7367 (2006).

  10. 10.

    , , & Proc. Natl. Acad. Sci. USA 106, 15332–15337 (2009).

  11. 11.

    , & Acc. Chem. Res. 44, 699–708 (2011).

  12. 12.

    et al. Proc. Natl. Acad. Sci. USA 104, 16793–16797 (2007).

  13. 13.

    , , & The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules 95–104 (Academic Press, 1991).

  14. 14.

    , , , & Proc. Natl. Acad. Sci. USA 110, 11226–11231 (2013).

  15. 15.

    et al. J. Am. Chem. Soc. 133, 6102–6105 (2011).

  16. 16.

    et al. J. Am. Chem. Soc. 134, 20681–20689 (2012).

  17. 17.

    , , & Annu. Rev. Phys. Chem. 62, 507–530 (2011).

  18. 18.

    et al. Science 322, 1857–1861 (2008).

  19. 19.

    & Cell 145, 341–355 (2011).

  20. 20.

    et al. Nature 421, 268–272 (2003).

Download references

Acknowledgements

We thank L. Zhang, L. Brus, V.W. Cornish, D. Peterka and R. Yuste for helpful discussions. We are grateful to Y. Shin and X. Gao for technical assistance. W.M. acknowledges support from Columbia University, a US National Institutes of Health Director's New Innovator Award, the US Army Research Office (W911NF-12-1-0594) and an Alfred P. Sloan Research Fellowship.

Author information

Affiliations

  1. Department of Chemistry, Columbia University, New York, New York, USA.

    • Lu Wei
    • , Fanghao Hu
    • , Yihui Shen
    • , Zhixing Chen
    •  & Wei Min
  2. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

    • Yong Yu
    • , Chih-Chun Lin
    •  & Meng C Wang
  3. Kavli Institute for Brain Science, Columbia University, New York, New York, USA.

    • Wei Min

Authors

  1. Search for Lu Wei in:

  2. Search for Fanghao Hu in:

  3. Search for Yihui Shen in:

  4. Search for Zhixing Chen in:

  5. Search for Yong Yu in:

  6. Search for Chih-Chun Lin in:

  7. Search for Meng C Wang in:

  8. Search for Wei Min in:

Contributions

L.W., F.H., Y.S., Z.C., Y.Y., C.-C.L. and M.C.W. performed experiments and analyzed data. L.W. and W.M. conceived the concept, designed the experiments and wrote the paper.

Competing interests

Columbia University, which L.W., F.H., Y.S., Z.C. and W.M. are affiliated with, has filed a patent application based on this work.

Corresponding author

Correspondence to Wei Min.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–8

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmeth.2878

Further reading