Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects

Abstract

Bacterial RNA–directed Cas9 endonuclease is a versatile tool for site-specific genome modification in eukaryotes. Co-microinjection of mouse embryos with Cas9 mRNA and single guide RNAs induces on-target and off-target mutations that are transmissible to offspring. However, Cas9 nickase can be used to efficiently mutate genes without detectable damage at known off-target sites. This method is applicable for genome editing of any model organism and minimizes confounding problems of off-target mutations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: NHEJ-mediated mutations induced in mice by Cas9 nickases.
Figure 2: Optimal orientation and distance of paired sgRNA for efficient Cas9 nickase–induced modification.

References

  1. 1

    Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. & Gregory, P.D. Nat. Rev. Genet. 11, 636–646 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Joung, J.K. & Sander, J.D. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. Nature 482, 331–338 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Jinek, M. et al. Science 337, 816–821 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Cong, L. et al. Science 339, 819–823 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Mali, P. et al. Science 339, 823–826 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Hwang, W.Y. et al. Nat. Biotechnol. 31, 227–229 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. Nat. Biotechnol. 31, 233–239 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Jinek, M. et al. Elife 2, e00471 (2013).

    Article  Google Scholar 

  11. 11

    Shen, B. et al. Cell Res. 23, 720–723 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Qi, L.S. et al. Cell 152, 1173–1183 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Wang, H. et al. Cell 153, 910–918 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Yang, H. et al. Cell 154, 1370–1379 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Fu, Y. et al. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Hsu, P.D. et al. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Mali, P. et al. Nat. Biotechnol. 31, 833–838 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Pattanayak, V. et al. Nat. Biotechnol. 31, 839–843 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Wang, J. et al. Genome Res. 22, 1316–1326 (2012).

    Article  Google Scholar 

  20. 20

    Kim, E. et al. Genome Res. 22, 1327–1333 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Ran, F.A. et al. Cell 154, 1380–1389 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Yeh, S. et al. Proc. Natl. Acad. Sci. USA 99, 13498–13503 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Tesson, L. et al. Nat. Biotechnol. 29, 695–696 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Caldecott, K.W. Nat. Rev. Genet. 9, 619–631 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. J. Cell Biol. 146, 905–916 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Quinlan, A.R. & Hall, I.M. Bioinformatics 26, 841–842 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank members of the entire Huang laboratory for their support and advice, G. Tischler for the C++ alignment code, and J. Liu and C. Gao for help with deep sequencing. This work was supported by grants from the 973 program (2010CB945101 and 2011CB944301) and a core grant from the Wellcome Trust.

Author information

Affiliations

Authors

Contributions

B.S., W.Z., J. Zhang, X.H. and W.C.S. designed the experiments and wrote the manuscript. B.S., W.Z., J. Zhang, J. Zhou, J.W. and L.C. performed the experiments. L.W., A.H. and V.I. performed the computational analysis of off-target sites.

Corresponding authors

Correspondence to Xingxu Huang or William C Skarnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–14 and Supplementary Note (PDF 3275 kb)

Supplementary Data

Paired off-target sites for AR-A and AR-B sgRNAs. Ten closest paired sites in the mouse genome with similar sequence to each combination of AR-A and AR-B Cas9 target sites. (XLS 92 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, B., Zhang, W., Zhang, J. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11, 399–402 (2014). https://doi.org/10.1038/nmeth.2857

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing