Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-scanning transmission electron tomography of vitrified cells

Abstract

Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STEM multislice-based calculations for wave scattering and propagation within atomistic super cells.
Figure 2: Comparison of CSTET and CET tomographic reconstructions.
Figure 3: Comparison of information contribution on tilt range included for reconstruction in CSTET and CET.
Figure 4: Damage from accumulating dose in cryo-TEM and cryo-STEM.
Figure 5: Comparison of CSTET and CET tomograms of human osteosarcoma (U2OS) cells.

Similar content being viewed by others

References

  1. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002).

    Article  CAS  Google Scholar 

  2. Milne, J.L. & Subramaniam, S. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat. Rev. Microbiol. 7, 666–675 (2009).

    Article  CAS  Google Scholar 

  3. Bharat, T.A. et al. Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 9, e1001196 (2011).

    Article  CAS  Google Scholar 

  4. Diebolder, C.A., Koster, A.J. & Koning, R.I. Pushing the resolution limits in cryo electron tomography of biological structures. J. Microsc. 248, 1–5 (2012).

    Article  CAS  Google Scholar 

  5. Gan, L. & Jensen, G.J. Electron tomography of cells. Q. Rev. Biophys. 45, 27–56 (2012).

    Article  CAS  Google Scholar 

  6. Dubochet, J., Lepault, J., Freeman, R., Berriman, J.A. & Homo, J.C. Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237 (1982).

    Article  Google Scholar 

  7. Al-Amoudi, A. et al. Cryo-electron microscopy of vitreous sections. EMBO J. 23, 3583–3588 (2004).

    Article  CAS  Google Scholar 

  8. Schertel, A. et al. Cryo FIB-SEM: volume imaging of cellular ultrastructure in native frozen specimens. J. Struct. Biol. 184, 355–360 (2013).

    Article  CAS  Google Scholar 

  9. Danev, R., Kanamaru, S., Marko, M. & Nagayama, K. Zernike phase contrast cryo-electron tomography. J. Struct. Biol. 171, 174–181 (2010).

    Article  Google Scholar 

  10. Murata, K. et al. Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure 18, 903–912 (2010).

    Article  CAS  Google Scholar 

  11. Philippsen, A., Engel, H.A. & Engel, A. The contrast-imaging function for tilted specimens. Ultramicroscopy 107, 202–212 (2007).

    Article  CAS  Google Scholar 

  12. Jones, A.V. & Leonard, K.R. Scanning-transmission electron microscopy of unstained biological sections. Nature 271, 659–660 (1978).

    Article  CAS  Google Scholar 

  13. Kellenberger, E. et al. Z-Contrast in biology—a comparison with other imaging modes. Ann. NY Acad. Sci. 483, 202–228 (1986).

    Article  CAS  Google Scholar 

  14. Colliex, C., Mory, C., Olins, A.L., Olins, D.E. & Tence, M. Energy filtered STEM imaging of thick biological sections. J. Microsc. 153, 1–21 (1989).

    Article  CAS  Google Scholar 

  15. Takaoka, A. & Hasegawa, T. Observations of unstained biological specimens using a low-energy, high-resolution STEM. J. Electron Microsc. (Tokyo) 55, 157–163 (2006).

    Article  Google Scholar 

  16. Hohmann-Marriott, M.F. et al. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat. Methods 6, 729–731 (2009).

    Article  CAS  Google Scholar 

  17. Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. STEM tomography for thick biological specimens. Ultramicroscopy 109, 70–80 (2008).

    Article  CAS  Google Scholar 

  18. Yakushevska, A.E. et al. STEM tomography in cell biology. J. Struct. Biol. 159, 381–391 (2007).

    Article  CAS  Google Scholar 

  19. Buban, J.P., Ramasse, Q., Gipson, B., Browning, N.D. & Stahlberg, H. High-resolution low-dose scanning transmission electron microscopy. J. Electron Microsc. (Tokyo) 59, 103–112 (2010).

    Article  CAS  Google Scholar 

  20. Cowley, J.M. & Moodie, A.F. The scattering of electrons by atoms and crystals. II. The effects of finite source size. Acta Crystallogr. 12, 353–359 (1959).

    Article  CAS  Google Scholar 

  21. de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA 106, 2159–2164 (2009).

    Article  CAS  Google Scholar 

  22. Peckys, D.B. & de Jonge, N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733–1738 (2011).

    Article  CAS  Google Scholar 

  23. Cowley, J.M., Hansen, M.S. & Wang, S.Y. Imaging modes with an annular detector in STEM. Ultramicroscopy 58, 18–24 (1995).

    Article  CAS  Google Scholar 

  24. Findlay, S.D. et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009).

    Article  Google Scholar 

  25. Tocheva, E.I. et al. Polyphosphate storage during sporulation in the gram-negative bacterium Acetonema longum. J. Bacteriol. 195, 3940–3946 (2013).

    Article  CAS  Google Scholar 

  26. Engel, A. in Advances in Imaging and Electron Physics Vol. 159 (ed. Hawkes, P.W.) 357–386 (Elsevier, 2009).

  27. Baker, L.A. & Rubinstein, J.L. Radiation damage in electron cryomicroscopy. Methods Enzymol. 481, 371–388 (2010).

    Article  CAS  Google Scholar 

  28. Baker, L.A., Smith, E.A., Bueler, S.A. & Rubinstein, J.L. The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals. J. Struct. Biol. 169, 431–437 (2010).

    Article  CAS  Google Scholar 

  29. Comolli, L.R. & Downing, K.H. Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography. J. Struct. Biol. 152, 149–156 (2005).

    Article  CAS  Google Scholar 

  30. Downing, K.H. Spot-scan imaging in transmission electron microscopy. Science 251, 53–59 (1991).

    Article  CAS  Google Scholar 

  31. Colliex, C. & Mory, C. Scanning-transmission electron microscopy of biological structures. Biol. Cell 80, 175–180 (1994).

    Article  CAS  Google Scholar 

  32. Shibata, N. et al. New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. (Tokyo) 59, 473–479 (2010).

    Article  CAS  Google Scholar 

  33. Sousa, A.A., Azari, A.A., Zhang, G.F. & Leapman, R.D. Dual-axis electron electron tomography of biological specimens: extending the limits of specimen thickness with bright-field STEM imaging. J. Struct. Biol. 174, 107–114 (2011).

    Article  Google Scholar 

  34. Zheng, S.Q., Sedat, J.W. & Agard, D.A. in Methods in Enzymology Vol. 481 (ed. Jensen, G.J.) 283–315 (Academic Press, 2010).

  35. Guesdon, A., Blestel, S., Kervrann, C. & Chrétien, D. Single versus dual-axis cryo-electron tomography of microtubules assembled in vitro: limits and perspectives. J. Struct. Biol. 181, 169–178 (2013).

    Article  CAS  Google Scholar 

  36. Myasnikov, A.G., Afonina, Z.A. & Klaholz, B.P. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography. Ultramicroscopy 126, 33–39 (2013).

    Article  CAS  Google Scholar 

  37. Dubey, G.P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).

    Article  CAS  Google Scholar 

  38. Ducret, A., Fleuchot, B., Bergam, P. & Mignot, T. Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. Elife 2, e00868 (2013).

    Article  Google Scholar 

  39. Remis, J.P. et al. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ. Microbiol. 16, 598–610 (2014).

    Article  CAS  Google Scholar 

  40. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  41. Agulleiro, J.I. & Fernandez, J.J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).

    Article  CAS  Google Scholar 

  42. Cowley, J.M. & Moodie, A.F. The scattering of electrons by atoms and crystals. II. The effects of finite source size. Acta Crystallogr. 12, 353–359 (1959).

    Article  CAS  Google Scholar 

  43. Barthel, J. Time-efficient frozen phonon multislice calculations for image simulations in high-resolution STEM in. Proc. of the 15th Euro. Microsc. Cong. (Journal of Microscopy, 2012).

  44. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  CAS  Google Scholar 

  45. Weickenmeier, A. & Kohl, H. Computation of absorptive form-factors for high-energy electron-diffraction. Acta Cryst. 47, 590–597 (1991).

    Article  Google Scholar 

  46. Loane, R.F., Xu, P.R. & Silcox, J. Thermal vibrations in convergent-beam electron-diffraction. Acta Cryst. 47, 267–278 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Teitelboim and G. Bellapadrona for preparation of samples. U2OS cells were a kind gift from B. Geiger (Weizmann Institute of Science). M.E. thanks P. Christie (University of Texas, Houston Medical School) for collaboration on Agrobacterium structures, which was supported by the US Israel Binational Agricultural Research and Development Fund. Electron microscopy was performed at the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging at the Weizmann Institute of Science. This work was additionally supported by the Gerhardt M.J. Schmidt Minerva Center for Supramolecular Architecture. The lab of M.E. has benefited from the historical generosity of the Harold Perlman family.

Author information

Authors and Affiliations

Authors

Contributions

S.G.W., L.H. and M.E. designed the experiments. S.G.W. and L.H. performed experiments. S.G.W., L.H. and M.E. analyzed the data. L.H. performed the simulation calculations. S.G.W., L.H. and M.E. wrote the manuscript.

Corresponding authors

Correspondence to Sharon Grayer Wolf, Lothar Houben or Michael Elbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 2895 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, S., Houben, L. & Elbaum, M. Cryo-scanning transmission electron tomography of vitrified cells. Nat Methods 11, 423–428 (2014). https://doi.org/10.1038/nmeth.2842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2842

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology